

Numerical simulation of two-fluid flow on multicores accelerator

Jonathan Jung

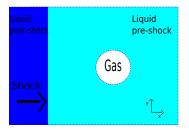
Supervisors : Philippe Helluy and Jean-Marc Hérard

IRMA, University of Strasbourg

PhD thesis defence, October 28th, 2013

Example of computation

Study case: a shock wave in a liquid interacting with a gas bubble.



Properties of the flow:

- two immiscible fluids,
- the gas and the water are compressible.

<u>Aim</u>: develop a robust and efficient numerical scheme. Adaptation to GPU cluster.

Model

• We consider the 2D compressible Euler equations:

$$\partial_{t}(\rho) + \partial_{x}(\rho u) + \partial_{y}(\rho v) = 0,$$

$$\partial_{t}(\rho u) + \partial_{x}(\rho u^{2} + p) + \partial_{y}(\rho uv) = 0,$$

$$\partial_{t}(\rho v) + \partial_{x}(\rho uv) + \partial_{y}(\rho v^{2} + p) = 0,$$

$$\partial_{t}(\rho E) + \partial_{x}((\rho E + p)u) + \partial_{y}((\rho E + p)v) = 0,$$

$$\partial_{t}(\rho \varphi) + \partial_{x}(\rho u\varphi) + \partial_{y}(\rho v\varphi) = 0,$$

where ρ is the density, (u, v) the velocity vector, E the total energy and φ the gas mass fraction.

- The liquid-gas interface is located at the discontinuities of the gas fraction φ . In the liquid, we have $\varphi = 0$ and in the gas $\varphi = 1$.
- We have 5 equations for 6 unknowns.

Equation of states

• Galilean invariance of the Euler equations:

$$p = p(\tau, e, \varphi),$$

where

$$\tau = \frac{1}{\rho},$$

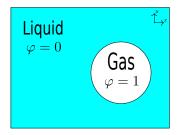
$$e = E - \frac{u^2 + v^2}{2}.$$

• The pressure p can be given by a stiffened gas law whose coefficients depend on the gas fraction φ

$$p(\tau, e, \varphi) = (\gamma(\varphi) - 1)\frac{e}{\tau} - \gamma(\varphi)p_{\infty}(\varphi).$$

Mixture

• At initial time,



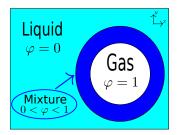
• Theoretically,

$$\partial_t \varphi + u \partial_x \varphi + v \partial_y \varphi = 0.$$

$$\rightarrow \varphi = 0 \text{ or } \varphi = 1 \text{ at}$$
 any time.

• Numerically, we have diffusion

$$0 < \varphi < 1$$
.



• In the mixture, |SA99|

$$\frac{1}{\gamma(\varphi)-1} = \varphi \frac{1}{\gamma_{gas}-1} + (1-\varphi) \frac{1}{\gamma_{liq}-1},$$

$$\frac{\gamma(\varphi)p_{\infty}(\varphi)}{\gamma(\varphi)-1} = \varphi \frac{\gamma_{gas}p_{\infty,gas}}{\gamma_{gas}-1} + (1-\varphi) \frac{\gamma_{liq}p_{\infty,liq}}{\gamma_{liq}-1} \,.$$

Conservative form

The system admits a conservative form:

$$\partial_t W + \partial_x F(W) + \partial_y G(W) = 0,$$

where

$$W = (\rho, \rho u, \rho v, \rho E, \rho \varphi)^{T},$$

$$F(W) = (\rho u, \rho u^{2} + p, \rho u v, (\rho E + p) u, \rho \varphi u)^{T},$$

$$G(W) = (\rho v, \rho u v, \rho v^{2} + p, (\rho E + p) v, \rho \varphi v)^{T}.$$

Hyperbolicity of the system

The system is hyperbolic in each direction [GR91]. For each $\mathbf{n} = (n_1, n_2)^T$, the matrix $n_1 D_W F(W) + n_2 D_W G(W)$ is **diagonalizable** with real eigenvalues on the domain

$$\Omega := \left\{ W \in \mathbb{R}^5, \ \rho > 0, \ \varphi \in [0; 1], \ p\left(\tau, e, \varphi\right) + p_{\infty}(\varphi) > 0 \right\},\,$$

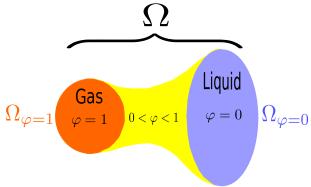
and admits the eigenvalues:

$$\lambda_1 = (u, v)^T \cdot \mathbf{n} - c, \quad \lambda_2 = \lambda_3 = \lambda_4 = (u, v)^T \cdot \mathbf{n}, \quad \lambda_5 = (u, v)^T \cdot \mathbf{n} + c,$$

where for $W \in \Omega$, the **sound speed** c is given by

$$c(\tau, e, \varphi) = \sqrt{\gamma(\varphi)\tau \left(p\left(\tau, e, \varphi\right) + p_{\infty}(\varphi)\right)}.$$

Non convexity of the hyperbolic set Ω



- Ω is not a convex set.
- $\Omega_{\varphi=0}$ and $\Omega_{\varphi=1}$, defined by

$$\Omega_{\varphi=\varphi_0} := \left\{ W \in \mathbb{R}^5, \ \rho > 0, \ \varphi = \varphi_0, \ p\left(\tau, e, \varphi_0\right) + p_{\infty}(\varphi_0) > 0 \right\}.$$

are convex sets.

Aim

- For approximating the 2D system, we consider directional splitting (Godunov [G59], Strang [S68]).
 - \rightarrow We solve successively the 1D systems

$$\partial_t W + \partial_x F(W) = 0, \quad \partial_t W + \partial_y G(W) = 0.$$

• From rotational invariance we only have to construct an approximation of

$$\partial_t W + \partial_x F(W) = 0, \ x \in [a; b], \ t > 0,$$

 $W(x, 0) = W_0(x),$

with some boundary conditions at a and b.

Riemann problem

• Riemann problem

$$\partial_t W + \partial_x F(W) = 0,$$

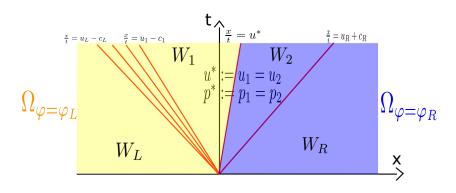
$$W(x,0) = \begin{cases} W_L, & \text{if } x < 0, \\ W_R, & \text{otherwise.} \end{cases}$$

• Even if Ω is not convex, there exists only one, self-similar, global, entropy solution [GR91]

$$W(x,t) = R(W_L, W_R, x/t).$$

• It is entirely defined by 4 constant states W_L , $W_1 \in \Omega_{\varphi = \varphi_L}$, $W_2 \in \Omega_{\varphi = \varphi_R}$ and W_R separated by self-similar waves: rarefaction, shock or contact.

Structure of the solution to the Riemann problem



Example of solution to the Riemann problem $R(W_L, W_R, x/t)$: a 1-rarefaction, a 2,3,4-contact and a 5-shock.

The exact solution lies in the non convex set $\Omega_{\varphi=\varphi_L} \cup \Omega_{\varphi=\varphi_R}$.

Godunov scheme

• We consider a space step $\Delta x = \frac{b-a}{N}$ and points

$$x_{i-\frac{1}{2}} = a + i \times \Delta x.$$

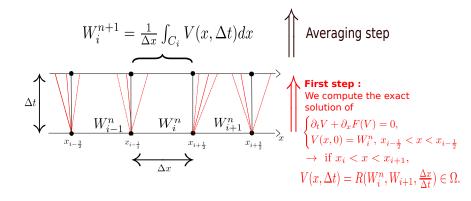
- The cell (or finite volume) C_i is the interval $]x_{i-\frac{1}{2}}; x_{i+\frac{1}{2}}[.$
- We note x_i the middle of the cell C_i

$$x_i = \frac{x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}}}{2}.$$

• We start with a piecewise constant approximation of W(x,0) made of cell averages

$$W_i^0 = \frac{1}{\Delta x} \int_{C_i} W(x,0) dx.$$

Time evolution of the Godunov scheme



Stability issue: Ω is not convex

- The exact solution $V(x, \Delta t) \in \Omega$ for all $x \in [a; b]$.
- As Ω is not convex, the averaging

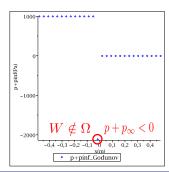
$$W_i^{n+1} = \frac{1}{\Delta x} \int_{C_i} V(x, \Delta t) dx,$$

may produce values outside Ω .

• For example:

Quantities	x < 0	x > 0	
$\rho(kg.m^{-3})$	10	1	
$u(m.s^{-1})$	-50	0	
p(Pa)	1	1	
φ	1	0	
γ	4.4	3	
$p_{\infty}(Pa)$	1000	0	

see also [MHB10].



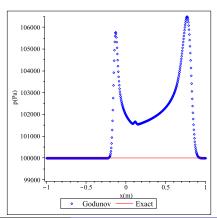
Spurious pressure oscillations at the two-fluid interface

Regardless of the stability problem, we observe velocity-pressure spurious oscillations at the two-fluid interface [A88].

For example, with

Quantities	x < 0	x > 0			
$\rho(kg.m^{-3})$	10	1			
$u(m.s^{-1})$	50	50			
p(Pa)	1e5	1e5			
φ	1	0			
γ	1.4	1.1			
$p_{\infty}(Pa)$	0	0			

we obtain:



Aim of the thesis

- Solve the stability problems due to the non convexity of Ω for a stiffened gas pressure law.
- Solve the problem of the pressure oscillations at the two-fluid interface.
- Extend the method to study the oscillations of a spherical bubble of gas in a liquid phase (well-balanced solver).
 - \rightarrow Not presented here.
- Develop a robust and efficient 2D numerical scheme.
- Implement the numerical scheme on Graphics Processing Units (GPU) and on GPU clusters.

How to remove the spurious pressure oscillations?

Previous works on the spurious pressure oscillations issue:

- use a Eulerian approach with a **non conservative flux** at the two-fluid interface (Abgrall [A88], Karni [Ka94], Fedkiw [F99], Saurel-Abgrall [SA99], Abgrall-Karni [AK01], etc),
- use a Lagrangian-projection scheme and project the pressure at interface (Barberon-Helluy-Rouy [BHR07], Chalons-Coquel [CC10]). The projection is **non** conservative.
- \rightarrow We obtain non conservative schemes.

How to remove the stability problems?

Previous works on the lack of stability caused by the non-convexity of the hyperbolic set:

- Other pressure law (Callen [C85], Croisille [C91], Chanteperdrix, Villedieu and Vila [CVV02], etc).
 - \rightarrow The proof of convexity is not provided.
- Chalons and Goatin [CG08] proposed a numerical method with a random sampling for computing phase transitions in traffic flow modeling.

How to solve these two issues?

- First approach: construct another pressure law \tilde{p} to obtain a convex domain of hyperbolicity $\tilde{\Omega}$.
 - → Stable and conservative numerical scheme **but** the spurious pressure oscillations are not removed.

- Second approach: keep a stiffened gas pressure law for the liquid and the gas and use a numerical strategy in order to avoid diffusion on φ and to preserve the non convex domain Ω .
 - \rightarrow Stable and conservative numerical scheme **without** spurious pressure oscillations.

First approach: construct an other pressure law $\tilde{p}(\tau, e, \varphi)$

Procedure

• The gas (resp. the liquid) is described by the **massic** entropy $s_1 = s_1(\tau_1, e_1)$ (resp. $s_2 = s_2(\tau_2, e_2)$) linked to the pressure p_i of phase i

$$p_i\left(\tau_i, e_i\right) = \frac{\partial_{\tau_i} s_i}{\partial_{e_i} s_i}.$$

• The mixture pressure $\tilde{p}(\tau, e, \varphi)$ is derived from the mixture entropy $s = s(\tau, e, \varphi)$ by the relation

$$\tilde{p}\left(\tau, e, \varphi\right) = \frac{\partial_{\tau} s}{\partial_{e} s}.$$

 \rightarrow We need a procedure for constructing the mixture entropy s from s_1 and s_2 .

Mixture entropy and pressure law

• At equilibrium, the immiscible mixture entropy $s(\tau, e, \varphi)$ is given by

$$s(\tau, e, \varphi) = \sup_{0 \le \alpha, z \le 1} \left(\varphi s_1 \left(\frac{\alpha}{\varphi} \tau, \frac{z}{\varphi} e \right) + (1 - \varphi) s_2 \left(\frac{1 - \alpha}{1 - \varphi} \tau, \frac{1 - z}{1 - \varphi} e \right) \right).$$

• From $\tilde{p} = \frac{\partial_{\tau} s}{\partial_{e} s}$, we deduce the pressure law

$$\tilde{p}(\tau, e, \varphi) = (\gamma(\tau, e, \varphi) - 1) \frac{e}{\tau} - \gamma(\tau, e, \varphi) p_{\infty}(\tau, e, \varphi).$$

• In the liquid $(p_{\infty,liq} > 0, \varphi = 0)$, the pressure law is modified, even if there is no gas. Indeed

$$\tilde{p}(\tau, e, 0) = \begin{cases} 0, & \text{if } e \leq \frac{\gamma_{liq} p_{\infty, liq}}{\gamma_{liq} - 1} \tau, \\ (\gamma_{liq} - 1) \frac{e}{\tau} - \gamma_{liq} p_{\infty, liq}, & \text{otherwise.} \end{cases}$$

$$\neq p_{liq}(\tau, e).$$

 \rightarrow Negative pressure are replaced by 0.

Properties of the system with the mixture pressure \tilde{p}

• With the mixture entropy s, we construct a Lax entropy

$$\tilde{\Omega} \to \mathbb{R},$$

$$W = (\rho, \rho u, \rho v, \rho E, \rho \varphi) \mapsto -\rho s \left(\frac{1}{\rho}, \frac{2\rho E - (\rho u)^2 + (\rho v)^2}{2\rho}, \varphi\right),$$

for the system $\partial_t W + \partial_x F(W) = 0$ coupled with \tilde{p} . Here, $\tilde{\Omega}$ is a convex set.

• From Mock theorem, we deduce the hyperbolicity of the system

$$\partial_t W + \partial_x F(W) = 0,$$

coupled with $\tilde{p}(\tau, e, \varphi)$ on the convex set $\tilde{\Omega}$.

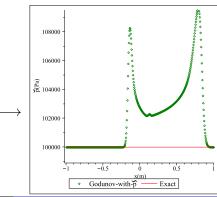
Advantages and drawbacks of \tilde{p}

Advantage:

- $\tilde{\Omega}$ is convex
 - \rightarrow the Godunov scheme is conservative and stable.

<u>Drawback</u>:

- For some parameters, the liquid degenerates to a pressureless gas.
 - → Theoretical and numerical difficulties.
- The problem of the spurious oscillations at the two-fluid interface is not solved.
- → We decide to concentrate on the second idea.

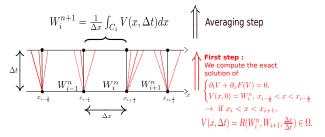


Himm scheme ALE-projection scheme Landom Scheme D Random Scheme

Second approach: construct a numerical method to preserve the non convex domain Ω

Problem of the Godunov scheme

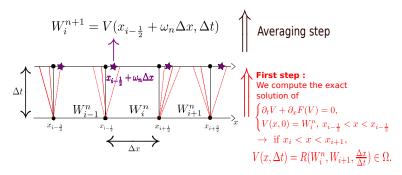
- Now, the gas and the liquid satisfy stiffened gas pressure law again.
- Godunov scheme:



- $\rightarrow V(x, \Delta t)$ lies in the non convex set Ω .
- \rightarrow spurious pressure oscillations and lack of stability arise from the averaging step.
 - <u>Conclusion</u>: replace the averaging step.

Glimm scheme [G65]

We take a pseudo-random number $\omega_n \in [0; 1[$ and we replace the averaging step of the Godunov scheme.



Advantages and drawbacks of the Glimm scheme

Advantages:

- It does not introduce numerical mixture.
- No spurious pressure oscillations at the two-fluid interface.
- It is **stable**, it preserves the hyperbolic set without diffusion

$$\Omega_{\varphi=0} \cup \Omega_{\varphi=1}$$
.

Drawbacks:

- Exact Riemann solver needed.
- Noisy rarefaction waves.
- No extension to higher dimensions (Colella [C78]).
- \rightarrow We do not follow this approach and introduce the class of the ALE-projection scheme.

ALE-projection scheme

The Arbitrary Lagrangian Eulerian (ALE)-projection scheme includes two steps:

- the ALE-step: we solve the problem on a moving mesh between time t^n and $t^{n+1,-}$.
 - The boundary $x_{i+\frac{1}{2}}$ moves at an arbitrary velocity $\xi^n_{i+\frac{1}{2}}$ between t^n and $t^{n+1,-}$

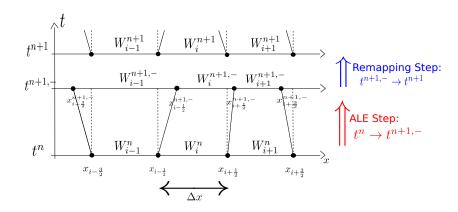
$$x_{i+\frac{1}{2}}^{n+1,-} = x_{i+\frac{1}{2}} + \Delta t \, \xi_{i+\frac{1}{2}}^n.$$

• We obtain a constant piecewise approximation $W^{n+1,-}$ of $W(\cdot,t_{n+1})$ on cells

$$C_i^{n+1,-} = \left] x_{i+\frac{1}{2}}^{n+1,-}; x_{i+\frac{1}{2}}^{n+1,-} \right[,$$

• the projection step: we project $W^{n+1,-}$ on the original cell C_i .

Structure of ALE-projection scheme



ALE step: expression of $W_i^{n+1,-1}$

 $W_i^{n+1,-}$ is given by the finite volume scheme

$$\Delta x_i^{n+1,-} W_i^{n+1,-} = \Delta x W_i^n - \Delta t \left(F(W_i^n, W_{i+1}^n, \xi_{i+\frac{1}{2}}^n) - F(W_{i-1}^n, W_i^n, \xi_{i-\frac{1}{2}}^n) \right)$$

where Δt satisfies some CFL condition and $F(W_L, W_R, \xi)$ is the numerical flux, given by

$$F(W_L, W_R, \xi) = F(R(W_L, W_R, \xi)) - \xi R(W_L, W_R, \xi).$$

We have to choose:

- the boundary velocity $\xi_{i+\frac{1}{2}}^n$,
- the projection to go back to the original grid.

Lagrange + Glimm remap

- We choose $\xi_{i+\frac{1}{2}}^n = u^*$ where u^* is the contact discontinuity velocity in the resolution of the Riemann problem $R(W_i^n, W_{i+1}^n, \cdot)$.
- We perform a random sampling

$$W_i^{n+1} = W^{n+1,-}(x_{i-\frac{1}{2}} + \omega_n \Delta x, \Delta t),$$

where $\omega_n \in [0; 1]$ is a pseudo-random number.

- Properties of the scheme:
 - constant velocity-pressure states are preserved,
 - stability of the non convex hyperbolic set $\Omega_{\varphi=0} \cup \Omega_{\varphi=1}$,

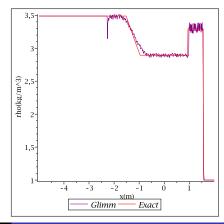
BUT...

Lagrange + Glimm remap: BV instabilities

We consider the following shock-interface interaction

Quantities	x < -4	-4 < x < 1	x > 1
$\rho(kg.m^{-3})$	3.488	2	1
$u(m.s^{-1})$	1.13	-1	-1
p(Pa)	23.33	2	2
φ	1	1	0
γ	1.4	1.4	2
$p_{\infty}(Pa)$	0	0	7

We observe BV instabilities due to the strong shock:



ALE+Glimm projection

• We choose to move the boundary $x_{i+\frac{1}{2}}$ at the speed of the fluid only at the two-fluid interface

$$\xi_{i+\frac{1}{2}}^n = \left\{ \begin{array}{ll} u_{i+\frac{1}{2}}^* & \text{if} & \left(\varphi_i^n - \frac{1}{2}\right)\left(\varphi_{i+1}^n - \frac{1}{2}\right) < 0, \\ 0 & \text{otherwise}. \end{array} \right.$$

• We perform a random sampling

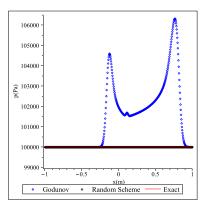
$$W_i^{n+1}=W^{n+1,-}(x_{i-\frac{1}{2}}+\omega_n\Delta x,\Delta t),$$

where $\omega_n \in [0; 1]$ is a pseudo-random number.

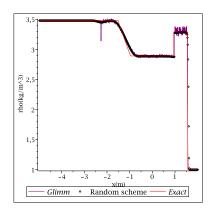
 \rightarrow We denote this scheme the "Random Scheme" (RS).

Results with the Random Scheme (RS)

No spurious pressure oscillations at the two-fluid interface:



No BV instabilities:



Properties of the Random Scheme

The Random Scheme has the following properties:

- it preserves hyperbolic set without diffusion $\Omega_{\varphi=0} \cup \Omega_{\varphi=1}$,
- it does not diffuse the gas mass fraction φ ,
- it is statistically conservative,
- it satisfies statistically a discrete entropy inequality,
- it does not introduce spurious oscillations at the two-fluid interface,
- it handles vacuum.

A 1D test: comparison with other schemes

We compare the Random Scheme with other schemes:

- the "Ghost Fluid for the poor" (GF) algorithm of Abgrall-Karni [AK01],
- the "SA" algorithm of Saurel-Abgrall [SA99],
- the "NonConsPhi" scheme that includes two steps:
 - a Lagrangian step: as the Lagrange + Glimm scheme,
 - a projection step: we use a conservative projection for ρ , ρu , ρv and ρE and for φ , we take:

$$\begin{split} \varphi_i^{n+1} &= \varphi_i^{n+1,-} - \frac{\Delta t}{\Delta x} \quad \big(\max(u_{i-\frac{1}{2}}, 0) (\varphi_i^{n+1,-} - \varphi_{i-1}^{n+1,-}) \\ &+ \min(u_{i+\frac{1}{2}}, 0) (\varphi_{i+1}^{n+1,-} - \varphi_i^{n+1,-}) \big). \end{split}$$

• the "CC" algorithm of Chalons-Coquel [CC10]. Lagrange-projection scheme with a projection of the pressure and a random sampling on φ at the two-fluid interface.

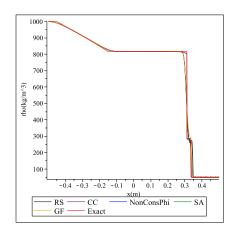
A 1D test

We test the Random Scheme on a water-air shock tube with discontinuous normal velocity.

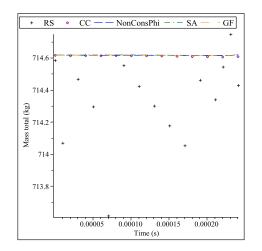
<u>Initial condition</u>:

Quantities	x < 0.2	x>0.2
$\rho(kg.m^{-3})$	1000	50
$u(m.s^{-1})$	0	0
$v(m.s^{-1})$	1000	-5000
p(Pa)	1e9	1e5
φ	0	1
γ	4.4	1.4
$p_{\infty}(Pa)$	6.8e8	0

We plot the numerical and the exact solution at time $t = 240\mu m$ with 1000 cells:

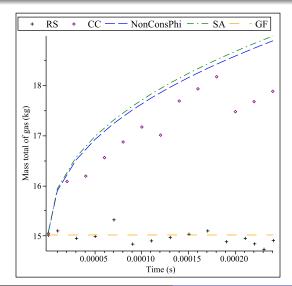


Conservation of the total mass (gas+liquid) until $240\mu s$

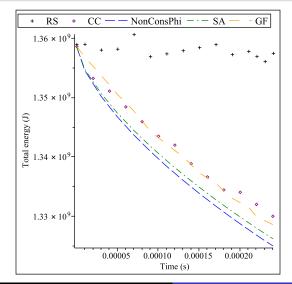


 \rightarrow Error less than 0.1%.

Conservation of the mass of gas until $240\mu s$



Conservation of the total energy until $240\mu s$



Extension to 2D with directional splitting

• For solving

$$\begin{cases} \partial_t W + \partial_x F(W) + \partial_y G(W) = 0, \\ W(x, y, t = 0) = W_0(x, y), \end{cases}$$

between time t = 0 and $t = \Delta t$, we use directional splitting (Godunov [G59] or Strang [S68]).

- Colella [C78] showed that the directional splitting coupled with the Glimm scheme does not converge (because of the nonlinear waves).
 - \rightarrow Does the directional splitting work with the Random Scheme ?

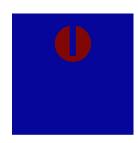
Test of Zalesak [Z79]

We consider a solid body rotation. We choose

$$u = -\Omega(y - y_0), \quad v = \Omega(x - x_0),$$

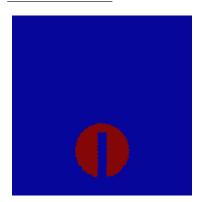
where $\Omega = \frac{2\pi}{628}$ is the angular velocity and (x_0, y_0) is the axis of rotation.

• Initial time:

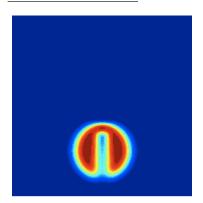


Test of Zalesak [Z79]: $\frac{1}{2}$ revolution

Random Scheme:

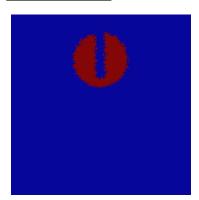


Conservative scheme:

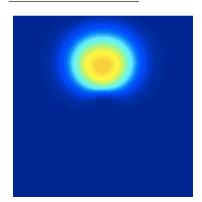


Test of Zalesak [Z79]: 5 revolutions

Random Scheme:

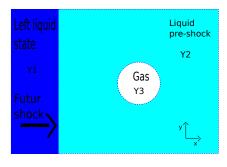


Conservative scheme:



Shock bubble interaction (water/gas)

We consider the shock-bubble interaction test of [KL2010]



The initial data are:

Quantities	Y1	Y2	Y3
$\rho(kg.m^{-3})$	1030.9	1000	1
$u(m.s^{-1})$	300	0	0
$v(m.s^{-1})$	0	0	0
p(Pa)	3.0e9	1.0e5	1.0e5
φ	0	0	1
γ	4.4	4.4	1.4
$p_{\infty}(Pa)$	6.8e8	6.8e8	0

Final time= $450\mu s$.

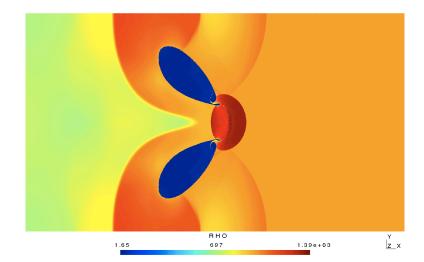
Grid: $14\,000 \times 7\,000$.

Time of computation on

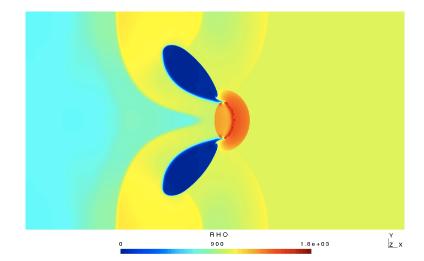
GPU (AMD Radeon

HD7970): $\approx 1h$.

Density ρ at 450 μs : Random Scheme

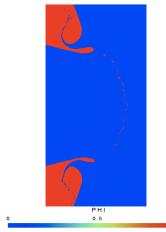


Density ρ at 450 μs : NonConsPhi scheme

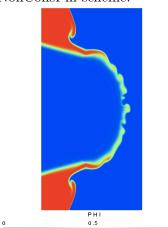


Zoom at $450\mu s$

Random Scheme:



NonConsPhi scheme:



 \rightarrow Different shapes with the two algorithms.

PU and OpenCL implementation eedup PI

GPU and MPI implementation

What is a GPU?

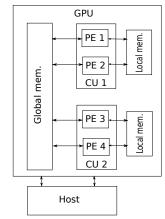
A modern Graphics Processing Unit (GPU) is made of:

- Global memory $(\approx 1 \text{ GB}).$
- Compute units (≈ 27).

Each compute unit is made of:

- Processing elements (≈ 8) .
- Local memory (\approx 16 kB).

A GPU with 2 Compute Units and 4 Processing Elements.



Programming rules on GPU

The same program can be executed on all the processing elements at the same time.

- All the processing elements have access to the global memory.
- The processing elements have only access to the local cache memory of their compute unit.
- The access to the global memory is slow while the access to the local memory is fast.
- The access to global memory is much faster if two neighboring processing elements read (or write) into two neighboring memory locations.
 - \rightarrow this is called "coalescent memory access".

OpenCL

- OpenCL means "Open Computing Language". It includes:
 - A library of C functions, called from the host, in order to drive the GPU.
 - A C-like language for writing the kernels that will be executed on the processing elements.
- Virtually, it allows to have as many compute units (work-groups) and processing elements (work-items) as needed.
- The threads are sent to the GPU thanks to a mechanism of command queues on the real compute units and processing elements.
- Portable: the same program can run on a multicore CPU and a GPU. It is also possible to manage several devices in the same program.

Implementation in 2D

- Initialization: we initialize the data on the CPU and we send all the data to the global memory of the GPU.
- For each time step:
 - We associate to each row of the grid a work-group and to each cell of the row a virtual processor (work-item). We perform the flux computations and projections in the x direction for each work-group.
 - We "transpose": we exchange the ρu and ρv components and we reorganize the data such that the x and y coordinates are exchanged.
 - We perform the flux computations and projections in the y direction for each work group. Thanks to the transposition, the memory access is coalescent.
 - We transpose to have the correct value in the correct place for the next time step.
- We send all the data to the CPU for post-processing.

Relaxation solver

- $F(W_L, W_R, \xi) = F(R(W_L, W_R, \xi)) \xi R(W_L, W_R, \xi)$
 - → to compute the numerical flux, we need to solve the exact Riemann solver.
 - \rightarrow It is not efficient on GPU.
- We construct a relaxation solveur $\tilde{R}(W_L, W_R, \xi)$. We extend the Bouchut relaxation solver [B04] to
 - the two-fluid flow,
 - the ALE approach,
 - the projection.
- ullet With the relaxation solver R, the Random Scheme keeps the same properties:
 - it preserve the hyperbolic set $\Omega_{\varphi=0} \cup \Omega_{\varphi=1}$,
 - it is statistically conservative and satisfies a discrete entropy inequality,
 - no spurious oscillations,
 - it handles vacuum.

Speedup

Implementation on GPU: The computation corresponds to 300 iterations on a grid 1024×512 .

		Computation time (s)	Speedup
AMD A8 3850 (1 coeur)	CPU	527	1
AMD A8 3850 (4 coeurs)	CPU	205	2.6
NVIDIA GeForce 320M	GPU	56	9.4
AMD Radeon HD5850	GPU	3	175
AMD Radeon HD7970	GPU	2	260

There are two points to obtain this speedup:

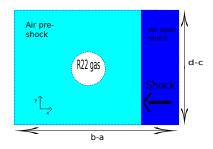
- we used an **optimized transposition** to have coalescent access in x and y directions.
 - \rightarrow 10 times faster with the transposition.
- the relaxation solver.
 - \rightarrow 50 times faster on GPU than exact solver.

GPU and OpenCL 2D implementation Speedup MPI

OpenGL: video

- The code is very efficient on GPU.
 - \rightarrow The limiting factor is the memory of the GPU (1GB).

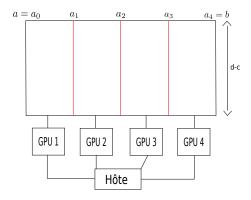
• We introduce Message Passing Interface (MPI) to consider finer mesh. We present the 4 GPUs MPI implementation for the following test case



Splitting of the domain

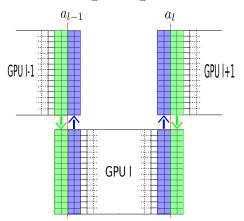
• We split the domain in the x direction into 4 subdomains with a small overlap.

• Each GPU is associated to a subdomain.



MPI communications

Before each iteration, we have to exchange several layers of cells between neighboring GPUs.



Overlap =

- 1 for classical finite volume scheme,
- 2 for ALE-projection scheme,
- 5 for ALE-projection scheme with second order MUSCL reconstruction.

Speedup

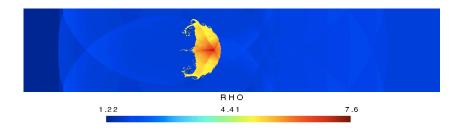
Implementation on MPI: Computation on a cluster of 4 cards AMD Radeon HD7970

Grille	1 GPU	4 GPUs	Speedup
2048×2048	14 s	14 s	1
4096×2048	22 s	16 s	1.4
4096×4096	77 s	60 s	1.3
8192×4096	150 s ?	61 s	2.5
16384×4096	600 s ?	230 s	2.6

 \rightarrow We can consider finer meshes. The MPI speedup is > 1 but not optimal. It could be improved by computations and communications overlap.

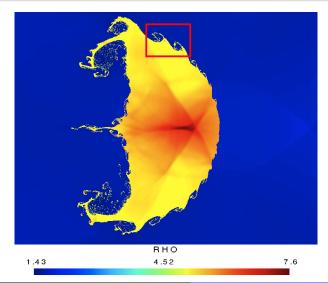
Schock R22/Air interaction: ρ at $600\mu s$

We consider a mesh of $20\,000 \times 5\,000$ cells.

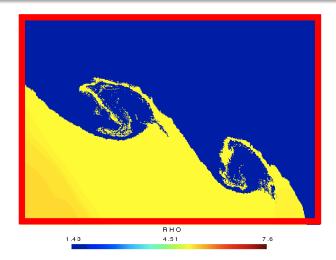


 \rightarrow We zoom on the bubble.

Schock R22/Air interaction: zoom on the bubble



Schock R22/Air interaction: zoom on the Rayleigh-Taylor instabilities



Conclusion and perspective

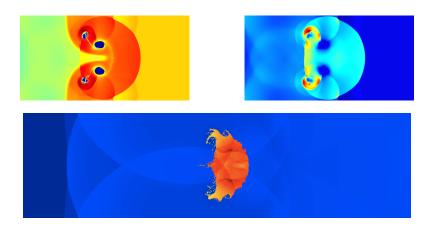
Conclusion:

- We developed a robust algorithm to treat complex two-fluid compressible flows. The RS has the following properties:
 - it preserves the hyperbolic set without diffusion $\Omega_0 \cup \Omega_1$,
 - it is statistically conservative and satisfies a discrete entropy inequality.
- The code is very efficient on GPU+MPI, we need only few minutes to compute a complex flow on a mesh with millions of cells.

Perspectives:

- Extend the code in 3D.
- Test the Random Scheme with the "hyperbolic convex" pressure law \tilde{p} .
- Extend the approach to low Mach number flows.

Thank you for your attention!



- - R. Abgrall. Generalisation of the Roe scheme for the computation of mixture of perfect gases. Recherche aérospatiale, 6, 31-43, 1988.
- R. Abgrall, S. Karni. Computations of compressible multifluids. Journal of Computational Physics, 169(2): 594-623, 2001.
- T. Barberon, P. Helluy, S. Rouy. Practical computation of axisymmetrical multifluid flows, http://hal.archives-ouvertes.fr/hal-00139598/fr/.
- F. Bouchut. Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Frontiers in Mathematics series, Birkhäuser, 2004.

- - H.B. Callen. Thermodynamics and an introduction to thermostatistics, second edition. Wiley and Sons, 1985.
- C. Chalons, F. Coquel. Computing material fronts with Lagrange-Projection approach. HYP2010 Proc. http://hal.archives-ouvertes.fr/hal-00548938/fr/.
- C. Chalons, P. Goatin. Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling. Interfaces and Free Boundaries, 10(2), 197-221, 2008.
- G. Chanteperdrix, P. Villedieu and J.-P. Vila. A compressible model for separated two-phase flows computations. In ASME Fluids Engineering Division Summer.

- - P. Colella. An Analysis of the Effect of Operator Splitting and of the Sampling Procedure on the Accuracy of Glimm's Method. PhD thesis, University of California, USA, 1978.
- J.-P. Croisille. Contribution à l'étude théorique et à l'approximation par éléments finis du système hyperbolique de la dynamique des gaz multidimensionnelle et multiespèces. PhD thesis, University of Paris VI, 1991.
- E. Godlewski, P.-A. Raviart. Hyperbolic systems of conservation laws. Société de mathematiques appliquées et industrielles Marketing, 1991.
- B. Després, F. Lagoutière. Numerical resolution of a two-component compressible fluid model with interfaces. Prog. Comp. Fluid Dyn. 7 (6) (2007) 295-310.

- R. Fedkiw, T. Aslam, B. Merriman, S. Osher. A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method). Journal of Computational Physics, 152, 457-492, 1999.
- J. Glimm. Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math., 18, 697-715, 1965.
- S.K. Godunov. Finite difference methods for numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sbornik 47, pp. 271-295, 1959.
- J.F. Hass, B. Sturtevant. Interaction of weak shock waves with cylindrical ansperical gas inhomogeneities. J. Fluid Mechanics, 181, 41-71,1997.

- - S. Karni. Multicomponent flow calculations by a consistent primitive algorithm. J. Comput. Phys, 112, 31-43,1994.
- S. Kokh, F. Lagoutière. An anti-diffuse numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model. Journal of Comp. Phy. 229 (2010) 2773-2809.
- S. Müller, P. Helluy, J. Ballmann. Numerical simulation of a single bubble by compressible two-phase fluids. J. Numer. Methods Fluids 62, no. 6, 591–631, 2010.
- R. Saurel, R. Abgrall, A simple method for compressible multifluid flows. SIAM J. Sci. Comput. 21 (1999), no. 3, 1115–1145.
- G. Strang. On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 5, 506–517, 1968.

GPU and OpenCL 2D implementation Speedup MPI

T. Steven, Zalesak. Fully Multidimensional Flux-Corrected Transports Algorithms for Fluids. Journal of Comp. Phy. 31 (1979) 335-362.