Quantitative Risk Analysis Master of Financial Engineering - M2 Academic Year 2014 - 2015 Jung Jonathan

First Practical : Value-at-Risk

Consider a portfolio of value V_0 at time t = 0 and V_T at time T > 0. We call *incurred loss at time* T the following random variable :

$$X = V_0 - V_T.$$

The value-at-Risk of this portfolio at confidence level α reads :

$$VaR_{\alpha}(X) = \min\left\{g : P(X \le g) \ge \alpha\right\}.$$

According to this definition, the probability that the incurred loss at time T be greater than $\operatorname{VaR}_{\alpha}$ is $1 - \alpha$. In other words, $\operatorname{VaR}_{\alpha}$ is the maximal loss of this portfolio at confidence level α .

- 1) It is assumed in this question that X is normally distributed with an average of 0 and a standard deviation of 1. What is $VaR_{0.9}(X)$?
- 2) Write a Matlab function VaR that takes as arguments a table $[x_1, \dots, x_n]$ of realizations of a random variable X and a confidence level $\alpha \in]0, 1[$ and returns $VaR_{\alpha}(X)$ obtained with a Monte-Carlo method.
- 3) Use your Matlab function VaR to compute $VaR_{0.9}(X)$ where X is a standard normal random variable. The realizations of the normal random variables will be built using Box and Muller method.

Now consider two independent securities i = 1 and i = 2. It is assumed that the loss at time T > 0 of security i is modeled as random variable X_i . Variable X_i is almost normally distributed. More precisely :

$$X_i = \beta_i + \eta_i,$$

where β_i follows a standard normal law and where the distribution of η_i is :

$$P(\eta_i = 0) = 0.991$$
 and $P(\eta_i = 10) = 0.009$.

- 4) Using the definition of the Value-at-Risk, give the equation satisfied by $\operatorname{VaR}_{\alpha}(X_1 + X_2)$. How can you solve this equation for $\operatorname{VaR}_{\alpha}(X_1 + X_2)$?
- 5) Using random number generators developed in the course of Advanced Algorithms, write a Matlab function that generates a vector of n realizations of random variable X_i .
- 6) Using the function defined in the course of Advanced Algorithms for finance, plot the density and the cumulative of the variable X_1 with N = 10000realizations.
- 7) Compute VaR_{0.99}(X_1) and VaR_{0.99}(X_2) using Monte-Carlo simulations with $n = 10\ 000$ realizations.
- 8) Write a Matlab function that estimates $\operatorname{VaR}_{\alpha}(X_1 + X_2)$ using Monte-Carlo simulations. This function will take as arguments the confidence level α and a number *n* of simulations to perform.
- 9) Use your previous function to compute $VaR_{0.9}(X_1 + X_2)$ and $VaR_{0.99}(X_1 + X_2)$ with $n = 10\ 000$ simulations.
- 10) Implement error control in the function written for question 8). Your new function should take as arguments a probability p (confidence level for the error control), a value ε (maximal relative error), and confidence level α for the computation of the VaR. Error control will be done using the sequential method.
- 11) Estimate VaR_{α}(X₁ + X₂) with $\alpha = p = 0.99$ and $\varepsilon = 0.05$.