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Example of computation :

Study case : a shock wave in
the liquid impinging a gas
bubble.
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Properties of the flow :
a flow of two immiscible
fluids,
the gas and the water are
two compressible fluids.
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Model

We consider the 2D compressible Euler equations :

∂t(ρ) + ∂x(ρu) + ∂y (ρv) = 0,
∂t(ρu) + ∂x(ρu2 + p) + ∂y (ρuv) = 0,
∂t(ρv) + ∂x(ρuv) + ∂y (ρv2 + p) = 0,

∂t(ρE ) + ∂x((ρE + p)u) + ∂y ((ρE + p)v) = 0,
∂t(ρϕ) + ∂x(ρuϕ) + ∂y (ρvϕ) = 0,

where ρ is the density, (u, v) the velocity vector, E the total energy
and ϕ the gas mass fraction.
⇒ We obtain a single system for the two fluids.

We have 5 equations for 6 unknowns.
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Equation of states

In order to close the system, we assume that p satisfies a stiffened
gas pressure law :

p(ρ, e, ϕ) = (γ(ϕ)− 1)ρe − γ(ϕ)π(ϕ),

where e = E − (u2 + v2)/2.
The speed of sound c is defined by c2 = ∂p

∂ρ + p
ρ2
∂p
∂e , then

c =

√
γ

p + π

ρ
.

For standard pressure and temperature,
in the gas (ρ = 1.225), we have ϕ = 1, γgaz = 1.4,
cgaz ≈ 340m/s, then πgaz ≈ 0 (perfect gas law).
in the liquid (ρ = 1000), we have ϕ = 0, γliq = 4.4,
cliq ≈ 1500m/s, then πliq ≈ 5× 108.
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Equation of states

We have
∂tϕ+ u∂xϕ+ v∂yϕ = 0

⇒ theoricaly, if ϕ takes the values 0 or 1 at initial time, it is
true at any time (there is not mixture).
Numerically, we have diffusion. In the numerical mixture we
take [SA1999]

1
γ(ϕ)− 1

= ϕ
1

γgaz − 1
+ (1− ϕ)

1
γliq − 1

,

γ(ϕ)π(ϕ)

γ(ϕ)− 1
= ϕ

γgazπgaz

γgaz − 1
+ (1− ϕ)

γliqπliq

γliq − 1
.
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Conservative form

We can write the system under the conservative form :

∂tW + ∂xF (W ) + ∂yG (W ) = 0,

where the vector of conservative variables is :

W = (ρ, ρu, ρv , ρE , ρϕ)T ,

and the conservative fluxes are :

F (W ) = (ρu, ρu2 + p, ρuv , (ρE + p)u, ρϕu)T ,

G (W ) = (ρv , ρuv , ρv2 + p, (ρE + p)v , ρϕv)T .
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Physical properties :
the density ρ is non negative,
the internal energie e is non negative,
the gas mass fraction ϕ is in [0; 1].

Mathematical properties :
Under the physical properties, the system is hyperbolic in each
direction. For each n = (n1, n2)T , the matrix
n1DW F (W ) + n2DW G (W ) is diagonalizable and admits the
eigenvalues :

λ1 = (u, v)T .n−c , λ2 = λ3 = λ4 = u, λ5 = (u, v)T .n+c .

We can show that the Riemann problem admits a unique
global entropy solution.
The pressure and the velocity are continuous at the two-fluid
interface.
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Aims

We want build a numerical scheme that :
preserves the non negativity of ρ and e,
converges (numerically) to the entropy solution,
introduces no fluctuations on u and p at the two-fluid
interface,
handles vacuum,
allows an efficient parallelism.

Jonathan Jung Computing two fluids flow on GPU



Introduction
Numerical scheme

Implementation on GPU
Applications

Lagrangian step
Remapping step
Properties
A 1D test

Splitting

In order to solve the 2D equations :

∂tW + ∂xF (W ) + ∂yG (W ) = 0,

we consider a dimensional splitting.
Thus, we only have to explain how to solve the 1D system

∂tW + ∂xF (W ) = 0,

where

W = (ρ, ρu, ρv , ρE , ρϕ)T .

F (W ) = (ρu, ρu2 + p, ρuv , (ρE + p)u, ρϕu)T .

As we know exact solutions in 1D, we can validate our scheme.
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Problem of the classical conservative numerical scheme

We observe oscillations on the pressure at the interface of the two
fluids.

If we consider the following
Riemann problem :

Quantities x < 0 x > 0

ρ(kg .m−3) 10 1
u(m.s−1) 50 50

p(Pa) 1e5 1e5
ϕ 1 0
γ 1.4 1.1
π 0 0

we obtain :
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Structure of the random numerical scheme

The scheme includes two steps :
the Lagrangian step for solving the system
∂tW + ∂xF (W ) = 0, between time tn and tn+1,− on a moving
mesh,
the remapping step for returning to the initial Eulerian mesh at
time tn+1.

Lagrange Step:

Remapping Step:
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Some notations

We propose a first order finite volume scheme with a
Lagrangian approach, the boundary x

i+ 1
2
moves at the velocity

of the fluid un
i+ 1

2
between tn and tn+1,− :

xn+1,−
i+ 1

2
= xn

i+ 1
2

+ ∆t un
i+ 1

2
.
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Finite volume scheme

Lagrange Step:Q

The integration of ∂tW + ∂xF (W ) = 0 on the space-time
quadrilateral Q gives :

∆xn+1,−
i W n+1,−

i −∆xW n
i +∆t

(
F (W n

i ,W
n
i+1)− F (W n

i−1,W
n
i )
)

= 0

where F (WL,WR) is the Lagrangian flux and ∆t satisfies the CFL
condition.
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Lagrangian flux

We recall that the Lagrangian flux is :

F (W n
i ,W

n
i+1) : = (0, pn

i+ 1
2
, 0, un

i+ 1
2
pn
i+ 1

2
, 0)T .

In order to compute the quantities i + 1/2, we use a relaxation
Riemann solver based on the work of Bouchut :

un
i+ 1

2
=

an
i+1/2,Lu

n
i + an

i+1/2,Run
i+1 + pn

i − pn
i+1

an
i+1/2,L + an

i+1/2,R
,

pn
i+ 1

2
=

an
i+1/2,Rpn

i + an
i+1/2,Lp

n
i+1 + an

i+1/2,La
n
i+1/2,R(un

i − un
i+1)

an
i+1/2,L + an

i+1/2,R
,

where an
i+1/2,L and an

i+1/2,R are chosen such that our solver satisfies
positivity properties.
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Remapping step

The Lagrangian step is done : we have W n+1,−
i .

Problem : how to do the projection to go back to the original
grid ?

Lagrange Step:

Remapping Step:
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Solution : a mixed projection

We apply random sampling at the two-fluid interface
If (ϕn

i−1 −
1
2)(ϕn

i −
1
2) < 0 or (ϕn

i −
1
2)(ϕn

i+1 −
1
2) < 0,

ωn is a random number ∈ [0, 1[, and we take :

W n+1
i =


W n+1,−

i−1 , if xi− 1
2

+ ωn∆x < xn+1,−
i− 1

2
,

W n+1,−
i , if xn+1,−

i− 1
2
≤ xi− 1

2
+ ωn∆x ≤ xn+1,−

i+ 1
2

,

W n+1,−
i+1 , if xi− 1

2
+ ωn∆x > xn+1,−

i+ 1
2

,

else, we use the natural cell averaging projection

W n+1
i = W n+1,−

i − ∆t
∆x

(max(ui− 1
2
, 0)(W n+1,−

i −W n+1,−
i−1 )

+ min(ui+ 1
2
, 0)(W n+1,−

i+1 −W n+1,−
i )).
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Choice for ωn

A good choice for the random number ωn is the (k1, k2) Van Der
Coput sequence. A implementation in C is given by :

float corput ( int n, int k1, int k2){
float corput = 0 ;
float s = 1 ;
while(n > 0){

s/ = k1;
corput+ = (k2 ∗ n%k1)%k1 ∗ s;
n/ = k1;

}
return corput ;

}
where k1 and k2 are two prime numbers satisfying k1 > k2 > 0.
Practically, we use the (5, 3) Van der Corput sequence. With 200
values, its arithmetic mean is 0.49598 and its standard deviation is
0.28907.
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Results obtained with the mixed projection

There is no oscillations on pressure where classical conservative
scheme failed.

Classical conservative scheme :
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The random scheme gives :
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Properties of the random scheme

The random scheme has the following properties :
it preserves the non negativity of ρ and e,
it does not diffuse the gas mass fraction ϕ,
if at initial time the x-velocity u and the pressure p are
constant, this property is preserved at any time.
it handles vaccum.

Remark : the random scheme is not conservative, even for the total
mass.
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A 1D test

We test the random scheme on a water-air shock tube with
discontinuous normal velocity.

Initial condition : We consider

QuantitiÈs x<0.2 x>0.2

ρ(kg .m−3) 1000 50
u(m.s−1) 0 0
v(m.s−1) 1000 −5000

p(Pa) 1e9 1e5
ϕ 0 1
γ 4.4 1.4

π(Pa) 6.8e8 0

We plot the numerical and the
exact solution at time
t = 240µm :
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A 1D test : comparison with other schemes

We compare the random scheme with other schemes :
the "ghost fluid for the poor" algorithm of Abgrall [AK2001]
(referenced by GF),
the algorithm of Saurel-Abgrall [SA1999](referenced by SA),
another scheme (BHRJ) that includes two steps :

a lagrangian step : as the random scheme,
a projection step : we use a conservative projection on for ρ,
ρu, ρv and ρE and for ϕ, we take :

ϕn+1
i = ϕn+1,−

i − ∆t
∆x

(max(ui− 1
2
, 0)(ϕn+1,−

i − ϕn+1,−
i−1 )

+ min(ui+ 1
2
, 0)(ϕn+1,−

i+1 − ϕn+1,−
i )).

These three schemes preserves the total mass.
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A 1D test : comparison with other schemes

If we want that the three schemes GF, SA and BHRJ preserve
constant (u, p) states, they do not preserve the total energy.
Assume that ∀i , (u, p)n

i = (u, p), a sufficient condition to have
(u, p)n+1

i = (u, p) is :

(ρe)n+1
i = (ρe)n

i −
∆t
∆x

(((ρe + p)u)i+1/2 − ((ρe + p)u)i−1/2),

(ρv2)n+1,∗
i = (ρv2)n

i −
∆t
∆x

(((ρv2)u)i+1/2 − ((ρv2)u)i−1/2),

then we perform :

(ρE )n+1
i = (ρE )n+1

i − (ρv2/2)n+1,∗
i + (ρv2/2)n+1

i .

Jonathan Jung Computing two fluids flow on GPU



Introduction
Numerical scheme

Implementation on GPU
Applications

Lagrangian step
Remapping step
Properties
A 1D test

A 1D test : comparison with other schemes

We plot the total mass of gas and the total mass during time
t = 240µm with approximatively 1000 cells.
Total mass of gas : Total mass :

⇒ Error less than 0.1 per cent.
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A 1D test : comparison with other schemes

We plot the total energy until
time t = 240µm :

To see if the total energy
converge to the exact solution,
we plot the relative error on
the L1-norm on energy :
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Second order

We pass to the second order in the lagrangian step with a
MUSCL reconstruction on the variable (ρ, u, v , p, ϕ). We
couple this reconstruction with a Heun scheme.

The second order scheme has
the same properties :

it preserves the
non-negativity of ρ and e,
it handles vacuum,
it does not diffuse the gas
mass fraction ϕ,

We plot the convergence curve
at first and second order, we
see the improvement :
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Implementation on GPU : speedup

The computation corresponds to 300 iterations on a grid
1024× 512.

time (s)
AMD A8 3850 (1 coeur) 527
AMD A8 3850 (4 coeurs) 205
NVIDIA GeForce 320M 56
AMD Radeon HD5850 3
AMD Radeon HD7970 2
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Implementation on GPU :
Implementation on GPU : The computation corresponds to 300
iterations on a grid 1024× 512

Computation time (s) Speedup
AMD A8 3850 (1 coeur) 527 1
AMD A8 3850 (4 coeurs) 205 2.6
NVIDIA GeForce 320M 56 9.4
AMD Radeon HD5850 3 175
AMD Radeon HD7970 2 260

Implementation on MPI : Computation on a cluster of 4 cards
AMD Radeon HD7970

Grille 1 GPU 4 GPUs Speedup
2048 × 2048 14 s 14 s 1
4096 × 2048 22 s 16 s 1.4
4096 × 4096 77 s 60 s 1.3
8192 × 4096 150 s ? 61 s 2.5
16384 × 4096 600 s ? 230 s 2.6
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Advection of a bubble of gas in uniform liquid flow

We test the random sampling coupling with the dimensional
splitting on a pure advection flow.

Initial datas :

Quantities Bubble Out.

ρ(kg.m−3) 1.225 1000
u(m.s−1) 100 100
v(m.s−1) −75 −75

p(Pa) 1.01e5 1.01e5
ϕ 1 0
γ 1.4 3
π 0 7.5e8

Initial time : At 6.7 10−3s :
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Test of Zalesak [Z1979]

We consider a solid body rotation. We choose

u = −Ω(y − y0), v = Ω(x − x0),

where Ω = 2π
628 is the angular velocity and (x0, y0) is the axis of

rotation.

Initial time :
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Test of Zalesak [Z1979]

Results with RS algorithm :
1
2 revolution :

5 revolutions :

Results with BHRJ algorithm :
1
2 revolution :

5 revolutions :
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Shock bubble interaction (water/gas)

We consider the
shock-bubble interaction
test of [KL2010]

Gas

Liquid

pre-shock
Left liquid

state

Futur 

shock

Y1

Y2

Y3

y

x

The initial data are :

QuantitÈs Y1 Y2 Y3

ρ(kg .m−3) 1030.9 1000 1
u(m.s−1) 300 0 0
v(m.s−1) 0 0 0

p(Pa) 3.0e9 1.0e5 1.0e5
ϕ 0 0 1
γ 4.4 4.4 1.4
π 6.8e8 6.8e8 0

Final time=600µs.
Grid : 3000× 1500.
Time of computation on GPU
(Tahiti) : 360s ≈ 6min.
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Results with RS :
ρ at 375µs :

ϕ at 375µs :

Results with BHRJ :
ρ at 375µs :

ϕ at 375µs :

Results with SA :
ρ at 375µs :

ϕ at 375µs :
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Results with RS :
ρ at 450µs :

ϕ at 450µs :

Results with BHRJ :
ρ at 450µs :

ϕ at 450µs :

Results with SA :
ρ at 450µs :

ϕ at 450µs :
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Results with RS :
ρ at 600µs :

ϕ at 600µs :

Results with BHRJ :
ρ at 600µs :

ϕ at 600µs :

Results with SA :
crash
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Conclusion

We developed an efficient algorithm to treat complex
compressible flows.
The RS has the following properties :

it preserves the non-negativity of ρ and e,
it preserves the hyperbolicity, p + π > 0,
it does not diffuse the gas mass fraction ϕ.

The code is very efficient on GPU, we need few minutes to
compute a complex flow on a mesh with millions of cells.

Futur works :
Test the MPI version of the code on more GPUs.
Consider axysymetrical geometry (bubble of cavitation).
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Thank you for your attention !
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Solveur de relaxation

Le solveur de relaxation consiste à résoudre le problème de
Riemann :

∂tW̃ + ∂x F̃ (W̃ ) = 0,

où

W̃ = (ρ, ρu, ρv , ρE , ρϕ,
ρβ

c2
, ρa, ρs)T ,

F̃ (W̃ ) = (ρu, ρu2 + β, ρuv , (ρE + β)u, ρϕu,
ρβu
a2

+ u, ρau, ρsu)T .

0
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