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Introduction

Linear wave equation with porosity

The low Mach numerical problem

Study case : Properties of the flow :

@ Nuclear core reactor. @ Low Mach flow :

Réacteur nucléaire
(enceinte de sécurit)

lul ~ 5ms1

c ~ 500m.si,

Générateur de vapeur
Pressuriseur (échangeur de chaleur)

:>M::Mz10’2<<1.
C

@ Flow with variable
cross-section (porosity).

@ Compressible flow : shock
wave in some accidental
cases.

Aim :

@ Develop a "compressible" numerical scheme that is accurate at low
Mach number.
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Introduction Linear wave equation with porosity
The low Mach numerical problem

Barotropic Euler equations with porosity

@ Barotropic Euler equations with porosity

Oe(ap) + V- (apu) =0,
Ot(apu) + V- (apu @ u) + aVp = 0,

where « € [amin, 1] is the porosity with amin > 0.
@ Hyperbolic system (under the condition p

@ Dimensionless : we introduce X
S g 5o U om_
p*p07UX*u°auy*u°7p*

X U —
Ivy*

'(p) > 0) with source term.
— Y

— r

P —_ L ;
5o AVeC Ug = T, we obtain
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Introduction

Linear wave equation with porosity
The low Mach numerical problem

Linear wave equation with porosity

@ Linearization around (¥ = 0,
porosity

O(ar)+ %V - (au) =0,
O¢(au) + FHaVr = 0.

@ Kernel of the spatial operator : incompressible space

o= {a = (ru)7 € 2 (01 [Vr = 0and V- (o) ~ 0},
Aim :

@ Study the behavior of the numerical scheme with the
incompressibles states g € &,.
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Introduction

The low Mach numerical problem

Numerical problem : an initial incompressible condition qg € &,.
Initial condition : At t = 0.0001(= M) :

i |
. i v
Cartesian i Eo.s
mesh i 06
g 0.4
Eo.z
o
o]
1
Triangular 08
mesh 0
4
EO.Q
. 0
Aims :

@ Found the origin of the problem on a cartesian mesh.

@ Understand the triangular case.
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Finite volume scheme
Godunov scheme and its discrete spacial kernel Modified equation on a cartesian mesh
Discrete study on a cartesian and triangular meshes

Finite volume scheme

Godunov scheme on a triangular or cartesian mesh (Q;)1<i<n

S(ar)i+ a2 Myl (au-n); =0,
F,-,-C@Q,-
o > Milrmg =0,

dt
F,-,-C{)Q,-

te]

|
B

_|_
s
=

where (r,-j, (au - ")u) is the solution of the 1D Riemann problem?® in the
direction njj on £/t =0

@jjOere + 350¢ ((au)e) = 0,

Ot ((au)e) + F5jOere = 0,
(r,-, (OZU),- . I‘l,j) Iff < 07

(rg, (au)g) (£=0.8)= { (rj, (au); - n,-j> otherwise.

1. S. Dellacherie, P. Omnes, On the Godunov scheme applied to the variable

cross-section linear equation. FVCAG, (4) :313-321, 2011.
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Finite volume scheme
Godunov scheme and its discrete spacial kernel Modified equation on a cartesian mesh
Discrete study on a cartesian and triangular meshes

Numerical scheme

@ The solution of the Riemann problem on &/t = 0 is given by

ri+ 1
i = 2 o+ 20 ((au)i B (au)j) e
(au); + (au)) -ny o
((aw) -m); = ( 2 ) ~(ri=n).
@ Godunov scheme on a triangular or cartesian mesh (£2;)1<i<n
[DO11]
i(ar),- * o > Iyl [((au),- + (cu);) -y + ai(ri — r)] =0
dt 2M |Qi‘r,-,-c8s2,- y Jj ij ij j )
i(OéU)- + ax O Z |r| {Iﬁ +r + L((Ogu) — (au),) . n..}n,. =0
dt ! oM |Q,| ryeB%; Iy i J aU i j ij ij
with k = 1.
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Finite volume scheme
Godunov scheme and its discrete spacial kernel Modified equation on a cartesian mesh
Discrete study on a cartesian and triangular meshes

Found the origin of the problem on a cartesian mesh

Modified equation on a cartesian mesh :

@ The Godunov scheme on a cartesian mesh Q; ; for ar gives us

Be(ar)ij + ax (aux)iiy ;= (aud);_y LA (auy); g — (auy); ;4
t 1) M YA x v 2Ay
s
= SMAx (Ol;+§J (fig1j —rij) — Qi1 (rij— rifl,j))
a
" W (a"”% (rijr = rij) = iz (rij — ri,j—l)) '

@ Then, the first order modified equation for ar is

a, Ax

Ay N

a, Ay
3X(Oz(9xr) + Way(aayr).
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Finite volume scheme
Godunov scheme and its discrete spacial kernel Modified equation on a cartesian mesh
Discrete study on a cartesian and triangular meshes

Modified equation on a cartesian mesh

@ We use the same method for au and we obtain the modified system

LX) (adr) — a*fﬂy 8, (ad,r) =0

Ay
A 1
aa* Xax —Ox(auuy)
Ay 2M o _
O¢(au) + =aVr — =0
M a, Ay 1
Ko Oy an(auy)

with x = 1. We write it as

De(0q) + ELM’“(q) —0 With Lyw = Lo~ MBy.o.

@ What is the relation between Ker L,, , and &, ?
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Finite volume scheme
Godunov scheme and its discrete spacial kernel Modified equation on a cartesian mesh
Discrete study on a cartesian and triangular meshes

Kernel of the modified equation

Q /fx >0, we have

Ker L;>00 = {q:= (r,u)"|Vr =0 and Ox(auy) = 9,(au,) = 0}
CE,.

Q Ifk =0, we have Ker L,—0,o = Eq-

Conclusion of the study of the continuous case :

@ Substitute Kk = 1 by k = 0 seams to allow to the Godunov scheme
to preserve the incompressible states q° € &£, on cartesian meshes.

To do :

@ Test this correction (x = 0) at the discret level.
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Finite volume scheme
Godunov scheme and its discrete spacial kernel Modified equation on a cartesian mesh
Discrete study on a cartesian and triangular meshes

Test of the low Mach correction kK = 0

@ Initial condition ¢° € £ : @ At t =0.0001(= M) :

Aims :

@ Study the problem at the discrete level.

@ Study the case of a triangular mesh.
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Finite volume scheme
Godunov scheme and its discrete spacial kernel Modified equation on a cartesian mesh
Discrete study on a cartesian and triangular meshes

Discrete study

@ We define the spaces £2 and £ associated to the incompressible
space &, on a triangular and a cartesian mesh.

@ Recall the Godunov scheme on a triangular or cartesian mesh
(Qi)1<i<n [DO11]

1
(ar) + o 2M |Q ‘F gg |r'.l| [((au),- + (au)j) LY + a,-j(r,- — I:,)} = 07
i(au),-+ a0 |r,|[r,+r +7((au) (aU)-)-n,-}n,--:o
dt 2M |Q[|r’.jcaﬂ y J ’J J y ly
with k = 1.

@ We write it as )

) =

d
g (¥an) +

where g, = (ri,u;) 7.
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Finite volume scheme
Godunov scheme and its discrete spacial kernel Modified equation on a cartesian mesh

Discrete study on a cartesian and triangular meshes

Gudunov scheme (k = 1) on a cartesian mesh :

Initial condition ¢° € £} : e At t = 0.0001(= M) :

:HDDPDDDD]D:H P

[ ]
]

[

1] [ [
[T T T[]

Proposition (k =1 on O)

Ker]Lg:La cé&n.
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Finite volume scheme
Godunov scheme and its discrete spacial kernel Modified equation on a cartesian mesh

Discrete study on a cartesian and triangular meshes

Low Mach scheme (x = 0) on a cartesian mesh :

@ Initial condition ¢° € £ : o At t =0.0001(= M) :

KerJL,';:O’a =&Y
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Finite volume scheme
Godunov scheme and its discrete spacial kernel Modified equation on a cartesian mesh

Discrete study on a cartesian and triangular meshes
Godunov scheme (x = 1) on a triangular mesh :
@ Initial condition ¢° € £4 : @ At t =0.0001(= M) :

VAAANANNNA
VAiA AV .«JAV%“

YAVAVAVAY,
AAVAA

VWA

A
NP

i
Vo A
;A‘AVAVE

~
AP

TAVAY NAVAVAYAAVAY
\\

Vi
VATV

AANANANY
VAN

r
SO
i
N
SRR
KRN
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Finite volume scheme
Godunov scheme and its discrete spacial kernel Modified equation on a cartesian mesh
Discrete study on a cartesian and triangular meshes

Conclusion on the discrete study of the kernel of the
Godunov scheme

Conclusion :

@ The Godunov scheme (k = 1) does not preserve some
incompressible states £ on a cartesian mesh.

@ The low Mach scheme (x = 0) preserves the incompressible states
ED on a cartesian mesh.

@ The Godunov scheme (k = 1) preserves the incompressible states
E2 on a triangular mesh.

BUT :

@ We wish a correction that allows to obtain the Godunov scheme
when the Mach number tends to 1.

@ What happens if the initial condition ¢° ¢ &£, 7

@ The study of the kernel &, is not sufficient.
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Definition and results
Some tests in the non linear case with o = 1
Accurate schemes at low Mach number Test in the non-linear case with oo # 1

Hodge decomposition and projection on &,

How can we split a state g ¢ £, 7

Theorem

Assume that & € [Qmin, @max| With aemin > 0. We build a Hodge
decomposition on the weighted spaces

Ea®Ey = L3 (T),

where the acoustic space £ is given by

50{—{q—(r,u)TeLg(T)3‘/radx—OandaqseH;(T),u—w}
T

Definition

| \

The Hodge decomposition allows to define an orthogonale projection
P, : 12(T)® — &,
q+— Pagq.

v
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Definition and results
Some tests in the non linear case with o = 1
Accurate schemes at low Mach number Test in the non-linear case with o # 1

Structure of the solution of the linear wave equation

Linear wave equation with porosity

Oi(ar)+ 5V - (au) =0,
O¢(au) 4+ ZaVr = 0.

If g is a solution of the linear wave equation with porosity with an initial
condition q°, we have

Ve €€ q(t20)=¢° €&, et Ve eEL, q(t>0)e &l

Corollary

The solution q of the linear wave equation with porosity with an initial
condition q° can be written as

g=Puq® + (¢ —Puq®) € &, + &5

v
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Definition and results
Some tests in the non linear case with o = 1
Accurate schemes at low Mach number Test in the non-linear case with o # 1

Structure of the solution of the linear wave equation

Linear wave equation with porosity

Oi(ar)+ %V - (au) =0,
O¢(au) + FHaVr =0.

The energy of the solution q of the linear wave equation with porosity
satisfies

d
=l =o.

| A\

Corollary

The solution q of the linear wave equation with porosity and with an
initial condition q° satisfies

VC >0, |4° = Paq®lliz < CM =Vt >0, [lg — Pag®|le2 (1) < CM.

v
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Definition and results
Some tests in the non linear case with o = 1
Accurate schemes at low Mach number Test in the non-linear case with o # 1

Accurate schemes at low Mach number

@ We transcribe this property at the discrete level for a short time.
@ We build Hodge decompositions on triangular and cartesian meshes.

@ We obtain discrete orthogonal projections P on £ and £2.

Definition

A scheme is accurate at low Mach number if the solution g given by
the scheme satisfies

VG, G >0, 3C3(C1, C2) > 0, ||q2 _qugH/é =M
= vt € [0; M), |lgn — Phahlliz (t) < GM,

where C3 does not depend on M.
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Definition and results
Some tests in the non linear case with o = 1

Accurate schemes at low Mach number Test in the non-linear case with o # 1

Initial condition :
@ a, =1.
e M=10"%
® gp = qp, +Mgp, with

rl?,l(Xv)/) = 17

(au)? = Vi x v, = q271 €&
and
r,?’2(x,y) =0,
u, = Vion = qlac (€))7
lahallz =1,
then

lah — Paghllz = [Majollz = M = O(M).
® We plot ||gn — Pogj|l2(t) as a fonction of the time.
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Accurate schemes at low Mach number

Definition and results

Some tests in the non linear case with o = 1
Test in the non-linear case with o # 1

Cartesian mesh with Ax = Ay = 0.02 and M = 0.0001 < Ax
1.2 T

u
0.8 |

L]
0.6

| [
=

Theorem (k =1 on O)

04t ®

VG >0, 3G(G) >0, 3G(G) > 0, [lgf —PE Rz = GM

=Vt > GM, |lgn —Pa qbllz(t) > Csmin(Ax, Ay),
for all M < % min(Ax, Ay).
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Definition and results

Some tests in the non linear case with o = 1
Accurate schemes at low Mach number Test in the non-linear case with o # 1
Cartesian mesh with Ax = Ay = 0.02 and M = 0.0001 < Ax :

0.0008 . .

k=Monll —e- .

k=0on0 =3 *
00007 F o 1 on A e R
0.0006 | Poad ]
-
,'
0.0005 | P J
»
0.0004 | Pd J
o+
pd
0.0003 | » J
o
o~
0.0002 - pd 1
P

0.0001 -8 1

‘Kggz Bog.g

o LALLM RRBR BN AR AR AR
0 2 4 6 8 10

t/M

Theorem (k = M on 0O)

VG, G >0, 3G(Cr, G) > 0, |Igf — PhEgh|| = GM
=Vt € [0; GM], |lgn — PEPghllz (1) < GM,

where C3 does not depend on M.
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Definition and results
Some tests in the non linear case with o = 1

Accurate schemes at low Mach number Test in the non-linear case with o # 1

Cartesian mesh with Ax = Ay = 0.02 and M = 0.0001 < Ax :

0.0001 g —_—
i k=0onll 8
9e-05 k=lon A -—a-- ]
LoE
se05 Py i

7e05 LA g ]

6005 D»g J

5e-05 4 & 1
B W ooe

A o

= 4e-05 - x 8, B
= EN 8,
= 9 -

3e-05 Ba “E. B

= oy
2¢-05 B B, i
A j=g=]
LN {=8= I
1e-05 | SN B

0 L L L L L L L L L

Theorem (k=1 on A et K =0 sur O)

VG, G >0, E|C3(C1, C2) >0, ||q2 _qungé =GM
=Vt >0, [lgn — Phapllz(t) < GM,

[e%

where C3 does not depend on M.
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Definition and results
Some tests in the non linear case with o = 1
Test in the non-linear case with o # 1

Cartesian mesh on Ax = Ay =0.0033 and M = 0.01 > Ax :

0.18

Accurate schemes at low Mach number

0.16 + 4

0.14 | "

llan = Bhapl2

Theorem (k =1 on O)

Ax < M, et Ay < CoM,

Vo, Ci, G >0, 3CG(CGy, G, C 0
0, G, G >0,3G(Go, G, &) >0, ”qg_quguﬁqu

=Vt e [O, CzM],

|an —Pagi|| 2 (1) < GM,

where C3 does not depend on M, Ax and Ay.

—
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Definition and results
Some tests in the non linear case with o = 1
Accurate schemes at low Mach number Test in the non-linear case with o # 1

Conclusion of the linear case

Triangular mesh :
@ The Godunov scheme (k = 1) is accurate at low Mach.
Cartesian mesh :

@ The Godunov scheme (k = 1)
e is not accurate at low Mach number if M < min(Ax, Ay).
e is accurate at low Mach number if M > min(Ax, Ay).

@ Two corrections for low Mach flows :

FCor(W,, W) = FS*d (W, W) — (1 —K)a.ai ( 0 )
’ ! 2May; [((au)i — (au)j) - n,-j] n;

o k=0 (low Mach correction) : accurate at low Mach,
e x =min(M,1) (all Mach correction) : accurate at low Mach
and allows to obtain the Godunov scheme for M > 1.

Next step :

@ Test the different schemes in the non-linear case.
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Definition and results
Some tests in the non linear case with a =1
Accurate schemes at low Mach number Test in the non-linear case with o # 1

Extension to the non-linear case with o = 1

Euler equations :
Oep+ V- (pu) =0,
e(pu) + V- (pu@u) + Vp =0,
Oe(pE) + V- ((pE + p)u) =0
Note W = (p, pu, pE)T. The numerical scheme can be written as
d Ier;'Q‘r”‘F Wj,n;) = 0.

The low Mach and the all Mach corrections consist to replace the flux
F(W;, Wj,nj;) with

0
1 — Kij)piCij
FEor (W, Wj) = FCodumov (W W) — % [(uj = uj) - ny]ny
0
where respectively kj; = 0 or x;; = min (1, lzgl
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Definition and results
Some tests in the non linear case with a =1
Accurate schemes at low Mach number Test in the non-linear case with o # 1

2D low Mach flow : vortex in a box (a = 1)

Tools :

@ Mesh : the software Salome,

@ Code : Librairy C+4+ CDMATH (http://www.cdmath.jimdo.com).
Initial condition :

@ We test the accuracy of the low Mach and the all Mach scheme
for a low Mach flow.

@ The initial state is given on the domain [0, 1] x [0, 1] by

p=1
u=Vxvy where Y(x,y)= %sinz(ﬂx) sin?(my),
p = 1000.

@ Wall boundary conditions.
@ Final time of computation of tf,, = 0.125s.
@ Mach =~ 0.026.
B ertar v P Teere T Ve


http://www.cdmath.jimdo.com

Definition and results
Some tests in the non linear case with a =1
Accurate schemes at low Mach number Test in the non-linear case with o # 1

2D low Mach flow : vortex in a box (o = 1)

Initial condition and Godunov (kj; = 1) on a 50 x 50 cartesian grid :

0.2
OE

kjj =0 (LM) and xj; = min (1, IZ—zl) (AM) on a cartesian 50 x 50 :
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Definition and results
Some tests in the non linear case with
Test in the non-linear case with o # 1

2D low Mach flow : vortex in a box (

Accurate schemes at low Mach number

{12,
K&

AV
XTX
<y
4‘}

WARAAARY
A
AN

AWVAAAAMAA

PAMWWAANARAY

0 ;ﬂ%vmw VA
T
o

Y
Ty

v,
A
i A%‘ %ﬁvm
YA
AN

@ The low Mach and the all Mach (AM) schemes are accurate at
low Mach number.
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Definition and results
Some tests in the non linear case with a =1
Accurate schemes at low Mach number Test in the non-linear case with o # 1

2D compressible flow : 2D Riemann problem (o = 1)

@ We test the stability of the low Mach and all Mach scheme for a
compressible flow (0 < Mach < 3.14.).

@ The initial state is given on the domain [0, 1] x [0, 1] by
0.1380,1.206,1.206), forx < 0.5, y <0.5
0.5323,0.000.1.206), forx > 0.5, y < 0.5

0.5323,1.206,0.000), forx < 0.5, y >0.5
)

(
(
(pa Ux»“y)(xv)/): (
(1.5000,0.000,0.000), forx > 0.5, y > 0.5.

(4 shock wave interaction).
@ Exact boundary conditions.

@ Final time of computation : tfn, = 0.4s.
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Definition and results
Some tests in the non linear case with a =1
Accurate schemes at low Mach number Test in the non-linear case with o # 1

2D compressible flow : 2D Riemann problem (a = 1)

Reference solution (Gudunov (k;; = 1) on a 600 x 600 cartesian grid) :

5e—07—t

(1, %) (AM) on a 200 x 200 cartesian grid :
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Definition and results
Some tests in the non linear case with a =1
Accurate schemes at low Mach number Test in the non-linear case with o # 1

2D compressible flow : 2D Riemann problem (a = 1)

1.2
0.8

Q

s IR
o
S

@ The all Mach scheme is stable on triangular and cartesian meshes
for this compressible flow.

@ The low Mach scheme is not stable for this compressible flow.
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Definition and results
Some tests in the non linear case with a =1
Accurate schemes at low Mach number Test in the non-linear case with o # 1

Carbuncle phenomena : supersonic flow around a cylinder

@ We initialize with a Mach = 10 flow on a 80 x 160 radial mesh.
@ Physical solution, x;; = 1 and k; = min ( ‘u”‘) (AM) :

Mach Mach Mach
109 10, 10
6 -6
E E )
E 0.01 76—E I

0.0113

@ The all Mach scheme is stable for a supersonic flow around a
cylinder but also produces the carbuncle phenomena...
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Definition and results
Some tests in the non linear case with o = 1
Accurate schemes at low Mach number Test in the non-linear case with oo # 1

A first test with o # 1 : a low Mach flow

@ We use a VFRoe solver in variables (a, p, au, p).

@ We test the accuracy of the all Mach scheme for a low Mach flow
with porosity (0 < Mach <5 x 1073.).

@ The initial state is given on the domain [0, 1.5] x [0, 8] by
p=1 u=1 u, =0, p=10°,
B {0.5, for (x,y) € [0.5;1] x [0.2;0.6],

1, otherwise.

@ Final time of computation : tf,, = 0.05s.

}A Mach
E O.OO542—E
C 70 005
20.8 0004
[ 20‘003
0.6 E
0.5—E 0.001 85—Iéo 002
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Accurate schemes at low Mach number Test in the non-linear case with oo # 1

A first test with o = 1 : a low Mach flow

kjj =1 on a triangular mesh (reference solution) :

E]
0.6758°7°

kij =1 and kj; = min (1, llc'—’l) (AM) on a cartesian mesh :
U

0.7O2EO'8
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Definition and results
Some tests in the non linear case with o =1
Accurate schemes at low Mach number Test in the non-linear case with oo # 1

Final conclusion and perspective

Conclusion :

@ We note the accuracy at low Mach number of finite volume
schemes on triangular meshes in the linear and non-linear cases.

@ We note the inaccuracy at low Mach number of the finite volume
schemes on cartesian meshes in the linear and non-linear cases.

@ The study of the linear case allows to propose a correction that
gives an accurate scheme at low Mach number and gives the
Godunov scheme when M > 1 on cartesian meshes.

Perpectives :
@ Test the scheme with non-constant fonction « in the non-linear case.

@ Study the stability of the corrected scheme.
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Definition and results
Some tests in the non linear case with

Accurate schemes at low Mach number Test in the non-linear case with oo # 1

Thank you for your attention !

EEEEEEEEEE
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Definition and results
Some tests in the non linear case with o = 1

Accurate schemes at low Mach number Test in the non-linear case with oo # 1

[@ S. Dellacherie, P. Omnes. On the Godunov scheme applied to the
variable cross-section linear equation. FVCAG, (4) :313-321, 2011.
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