

Analysis at the discrete level of the low Mach problem with porosity: the triangular and the cartesian cases

Jonathan Jung (LRC-Manon, Paris 6)

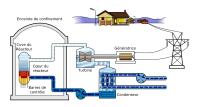
Collaborators : Stéphane Dellacherie (CEA, Saclay & LRC-Manon) Pascal Omnes (CEA, Saclay & Université Paris 13)

Paris 13, 14 novembre 2014

Linear wave equation with porosity Numerical problem Numerical scheme

Study case :

• Nuclear core reactor.



Properties of the flow :

- Flow with variable cross-section (porosity).
- Liquid-gaz flow.
- Compressible flow.
- Low Mach number

$$|u| \ll c$$

$$\Leftrightarrow M := \frac{|u|}{c} \ll 1.$$

Aim :

• Develop a "compressible" numerical scheme that is accurate at low Mach number.

Linear wave equation with porosity Numerical problem Numerical scheme

Barotropic Euler equations

• Barotropic Euler equations with porosity

$$\begin{cases} \partial_t(\alpha\rho) + \nabla \cdot (\alpha\rho \mathbf{u}) = 0, \\ \partial_t(\alpha\rho \mathbf{u}) + \nabla \cdot (\alpha\rho \mathbf{u} \otimes \mathbf{u}) + \alpha\nabla p = 0, \end{cases}$$

where $\alpha \in [\alpha_{\min}, 1]$ is the porosity, where $\alpha_{\min} > 0$.

• Dimensionless : we introduce $\tilde{x} = \frac{x}{L}$, $\tilde{y} = \frac{y}{L}$, $\tilde{t} = \frac{t}{T}$, $\tilde{\alpha} = \frac{\alpha}{\alpha_{c}}$, $\tilde{\rho} = \frac{\rho}{\rho_0}, \ \tilde{u_x} = \frac{u_x}{u_0}, \ \tilde{u_y} = \frac{u_y}{u_0}, \ \tilde{p} = \frac{p}{\rho_0} \ \text{avec} \ u_0 = \frac{L}{T}, \ \text{we obtain}$ $\begin{cases} \partial_{\tilde{t}}(\tilde{\alpha}\tilde{\rho}) + \tilde{\nabla} \cdot (\tilde{\alpha}\tilde{\rho}\tilde{\mathbf{u}}) = 0, \\ \partial_{\tilde{t}}(\tilde{\alpha}\tilde{\rho}\tilde{\mathbf{u}}) + \tilde{\nabla} \cdot (\tilde{\alpha}\tilde{\rho}\tilde{\mathbf{u}}\otimes\tilde{\mathbf{u}}) + \frac{\tilde{\alpha}}{M^2}\nabla\tilde{p} = 0, \end{cases} \quad \text{with } M = \frac{u_0}{c_0}. \end{cases}$ • Change of variable $\tilde{\rho} := \tilde{\rho}_{\star} \left(1 + \frac{M}{a_{\star}} \tilde{r} \right)$, with $\begin{cases} a_{\star}^2 = \tilde{p}'(\tilde{\rho}_{\star}) \\ \frac{M}{\tilde{r}} \ll 1. \end{cases}$ $\begin{cases} \partial_t(\tilde{\alpha}\tilde{r}) + \tilde{\nabla} \cdot (\tilde{\alpha}\tilde{r}\tilde{\mathbf{u}}) + \frac{a_\star}{M}\tilde{\nabla} \cdot (\tilde{\alpha}\tilde{\mathbf{u}}) = 0, \\ \partial_{\tilde{t}}(\tilde{\alpha}\tilde{\mathbf{u}}) + (\tilde{\mathbf{u}}\cdot\tilde{\nabla})(\tilde{\alpha}\tilde{\mathbf{u}}) + \frac{\tilde{\alpha}}{M}\frac{\tilde{p}'(\tilde{\rho}_\star(1+\frac{M}{a_\star}\tilde{r}))}{a_\star(1+\frac{M}{\omega}\tilde{r})}\nabla\tilde{r} = 0. \end{cases}$

Linear wave equation with porosity Numerical problem Numerical scheme

Barotropic Euler equations

• Linearization around $(\tilde{r} = 0, \tilde{\mathbf{u}} = 0)$: linear wave equation with porosity

$$\begin{cases} \partial_t(\alpha r) + \frac{a_\star}{M} \nabla \cdot (\alpha \mathbf{u}) = 0, \\ \partial_t(\alpha \mathbf{u}) + \frac{a_\star}{M} \alpha \nabla r = 0. \end{cases}$$

• Kernel of the spatial operator : incompressible space

$$\mathcal{E}_{\alpha} := \bigg\{ q = (r, \mathbf{u})^T \in L^2_{\alpha} \left(\mathbb{T} \right)^3 \bigg| \nabla r = 0 \text{ and } \nabla \cdot \left(\alpha \mathbf{u} \right) = 0 \bigg\}.$$

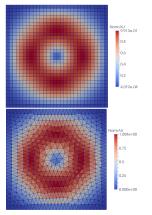
Aim :

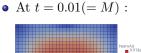
• Study the behavior of the numerical scheme with the incompressibles states $q \in \mathcal{E}_{\alpha}$.

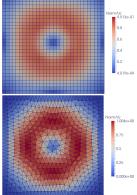
Linear wave equation with porosity Numerical problem Numerical scheme

Numerical problem : an initial incompressible condition $q_0 \in \mathcal{E}_{\alpha}$

• Initial condition :







Aims :

- Found the origin of the problem on a cartesian mesh.
- Understand the triangular case.

Linear wave equation with porosity Numerical problem Numerical scheme

Numerical scheme

Godunov scheme on a triangular or cartesian mesh $(\Omega_i)_{1 \le i \le N}$

$$\begin{cases} \frac{d}{dt} (\alpha r)_i + \frac{a_{\star}}{2M} \frac{1}{|\Omega_i|} \sum_{\Gamma_{ij} \subset \partial \Omega_i} |\Gamma_{ij}| (\alpha \mathbf{u} \cdot \mathbf{n})_{ij} = 0, \\ \frac{d}{dt} (\alpha \mathbf{u})_i + \frac{a_{\star}}{2M} \frac{\alpha_i}{|\Omega_i|} \sum_{\Gamma_{ij} \subset \partial \Omega_i} |\Gamma_{ij}| r_{ij} \mathbf{n}_{ij} = 0, \end{cases}$$

where $(r_{ij}, (\alpha \mathbf{u} \cdot \mathbf{n})_{ij})$ is the solution of the 1D Riemann problem¹ in the direction \mathbf{n}_{ij} on $\xi/t = 0$

$$\begin{cases} \alpha_{ij}\partial_t r_{\xi} + \frac{a_{\star}}{M}\partial_{\xi}\left((\alpha u)_{\xi}\right) = 0, \\ \partial_t\left((\alpha u)_{\xi}\right) + \frac{a_{\star}}{M}\alpha_{ij}\partial_{\xi}r_{\xi} = 0, \\ \left(r_{\xi}, (\alpha u)_{\xi}\right)\left(t = 0, \xi\right) = \begin{cases} (r_i, (\alpha \mathbf{u})_i \cdot \mathbf{n}_{ij}) & \text{si } \xi < 0, \\ \left(r_j, (\alpha \mathbf{u})_j \cdot \mathbf{n}_{ij}\right) & \text{sinon.} \end{cases}$$

1. S. Dellacherie, P. Omnes, On the Godunov scheme applied to the variable cross-section linear equation. FVCA6, (4) :313–321, 2011.

Linear wave equation with porosity Numerical problem Numerical scheme

Numerical scheme

• The solution of the Riemann problem on $\xi/t = 0$ is given by

$$\begin{cases} r_{ij} = \frac{r_i + r_j}{2} + \frac{1}{2\alpha_{ij}} \left((\alpha \mathbf{u})_i - (\alpha \mathbf{u})_j \right) \cdot \mathbf{n}_{ij}, \\ \left((\alpha \mathbf{u}) \cdot \mathbf{n} \right)_{ij} = \frac{\left((\alpha \mathbf{u})_i + (\alpha \mathbf{u})_j \right) \cdot \mathbf{n}_{ij}}{2} + \frac{\alpha_{ij}}{2} (r_i - r_j). \end{cases}$$

• Godunov scheme on a triangular or cartesian mesh $(\Omega_i)_{1 \le i \le N}$ [DO11]

$$\begin{cases} \frac{d}{dt} (\alpha r)_i + \frac{a_{\star}}{2M} \frac{1}{|\Omega_i|} \sum_{\Gamma_{ij} \subset \partial \Omega_i} |\Gamma_{ij}| \Big[\big((\alpha \mathbf{u})_i + (\alpha \mathbf{u})_j \big) \cdot \mathbf{n}_{ij} + \alpha_{ij} (r_i - r_j) \Big] = 0, \\ \frac{d}{dt} (\alpha \mathbf{u})_i + \frac{a_{\star}}{2M} \frac{\alpha_i}{|\Omega_i|} \sum_{\Gamma_{ij} \subset \partial \Omega_i} |\Gamma_{ij}| \Big[r_i + r_j + \frac{\kappa}{\alpha_{ij}} \big((\alpha \mathbf{u})_i - (\alpha \mathbf{u})_j \big) \cdot \mathbf{n}_{ij} \Big] \mathbf{n}_{ij} = 0 \\ \text{with } \kappa = 1. \end{cases}$$

4

Found the origin of the problem on a cartesian mesh

Modified equation on a cartesian mesh :

• The Godunov scheme on a cartesian mesh $\Omega_{i,j}$ for αr gives us

$$\partial_t (\alpha r)_{i,j} + \frac{a_{\star}}{M} \frac{(\alpha u_x)_{i+1,j} - (\alpha u_x)_{i-1,j}}{2\Delta x} + \frac{a_{\star}}{M} \frac{(\alpha u_y)_{i,j+1} - (\alpha u_y)_{i,j-1}}{2\Delta y} \\ = \frac{a_{\star}}{2M\Delta x} \left(\alpha_{i+\frac{1}{2},j} \left(r_{i+1,j} - r_{i,j} \right) - \alpha_{i-\frac{1}{2},j} \left(r_{i,j} - r_{i-1,j} \right) \right) \\ + \frac{a_{\star}}{2M\Delta y} \left(\alpha_{i,j+\frac{1}{2}} \left(r_{i,j+1} - r_{i,j} \right) - \alpha_{i,j-\frac{1}{2}} \left(r_{i,j} - r_{i,j-1} \right) \right).$$

• Then, the first order modified equation for αr is

$$\partial_t(\alpha r) + \frac{a_\star}{M} \nabla \cdot (\alpha \mathbf{u}) = \frac{a_\star \Delta x}{2M} \partial_x(\alpha \partial_x r) + \frac{a_\star \Delta y}{2M} \partial_y(\alpha \partial_y r).$$

Modified equation on a cartesian mesh Discrete study on a cartesian mesh Discrete study of the triangular case

Modified equation on a cartesian mesh

• We use the same method for $\alpha \mathbf{u}$ and we obtain the modified system

$$\partial_t(\alpha r) + \frac{a_\star}{M} \nabla \cdot (\alpha \mathbf{u}) - \frac{a_\star \Delta x}{2M} \partial_x(\alpha \partial_x r) - \frac{a_\star \Delta y}{2M} \partial_y(\alpha \partial_y r) = 0$$

$$\partial_t(\alpha \mathbf{u}) + \frac{a_\star}{M} \alpha \nabla r - \begin{pmatrix} \kappa \alpha \frac{a_\star \Delta x}{2M} \partial_x \left(\frac{1}{\alpha} \partial_x(\alpha u_x) \right) \\ \kappa \alpha \frac{a_\star \Delta y}{2M} \partial_y \left(\frac{1}{\alpha} \partial_y(\alpha u_y) \right) \end{pmatrix} = 0$$

with $\kappa = 1$. We write it as

$$\partial_t(\alpha q) + \frac{\mathcal{L}_{\kappa,\alpha}}{M}(q) = 0 \quad \text{with} \quad \mathcal{L}_{\kappa,\alpha} = L_\alpha - MB_{\kappa,\alpha}.$$

• What is the relation between Ker $\mathcal{L}_{\kappa,\alpha}$ and \mathcal{E}_{α} ?

Modified equation on a cartesian mesh Discrete study on a cartesian mesh Discrete study of the triangular case

Kernel of the modified equation

Proposition

• If $\kappa > 0$, we have

$$Ker \mathcal{L}_{\kappa>0,\alpha} = \left\{ q := (r, \boldsymbol{u})^T | \nabla r = 0 \text{ and } \partial_x(\alpha u_x) = \partial_y(\alpha u_y) = 0 \right\}$$
$$\subseteq \mathcal{E}_{\alpha}.$$

2) If
$$\kappa = 0$$
, we have $\operatorname{Ker} \mathcal{L}_{\kappa=0,\alpha} = \mathcal{E}_{\alpha}$.

Conclusion of the study of the continuous case :

• Substitute $\kappa = 1$ by $\kappa = 0$ seams to allow to the Godunov scheme to preserve the incompressible states $q^0 \in \mathcal{E}_{\alpha}$ on cartesian meshes.

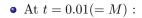
To do :

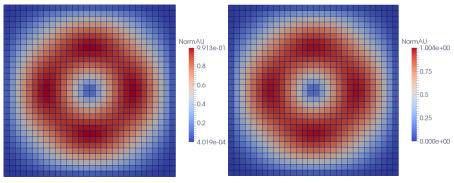
• Test this correction $(\kappa = 0)$ at the discret level.

Modified equation on a cartesian mesh Discrete study on a cartesian mesh Discrete study of the triangular case

Test of the low Mach correction $\kappa = 0$

• Initial condition $q^0 \in \mathcal{E}_{\alpha}$:





Aims :

- Study the problem at the discrete level.
- Study the case of a triangular mesh.

Discrete study

- We define the spaces $\mathcal{E}_{\alpha}^{\bigtriangleup}$ and $\mathcal{E}_{\alpha}^{\Box}$ associated to the incompressible space \mathcal{E}_{α} on a triangular and a cartesian mesh.
- Recall the Godunov scheme on a triangular or cartesian mesh $(\Omega_i)_{1 \le i \le N}$ [DO11]

$$\begin{cases} \frac{d}{dt} (\alpha r)_i + \frac{a_{\star}}{2M} \frac{1}{|\Omega_i|} \sum_{\Gamma_{ij} \subset \partial \Omega_i} |\Gamma_{ij}| \Big[\left((\alpha \mathbf{u})_i + (\alpha \mathbf{u})_j \right) \cdot \mathbf{n}_{ij} + \alpha_{ij} (r_i - r_j) \Big] = 0, \\ \left(\frac{d}{dt} (\alpha \mathbf{u})_i + \frac{a_{\star}}{2M} \frac{\alpha_i}{|\Omega_i|} \sum_{\Gamma_{ij} \subset \partial \Omega_i} |\Gamma_{ij}| \Big[r_i + r_j + \frac{\kappa}{\alpha_{ij}} \big((\alpha \mathbf{u})_i - (\alpha \mathbf{u})_j \big) \cdot \mathbf{n}_{ij} \Big] \mathbf{n}_{ij} = 0 \\ \text{with } \kappa = 1. \end{cases}$$

• We write it as

$$\frac{d}{dt}(\alpha q_h) + \frac{\mathbb{L}_{\kappa,\alpha}^h}{M}(q_h) = 0,$$

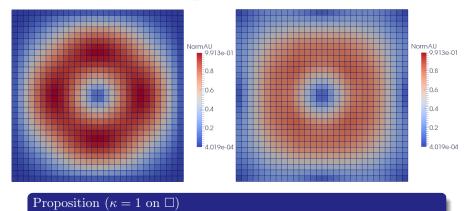
where $q_h = (r_i, \mathbf{u}_i)^T$.

Modified equation on a cartesian mesh Discrete study on a cartesian mesh Discrete study of the triangular case

Gudunov scheme $(\kappa=1)$ on a cartesian mesh :

• Initial condition $q^0 \in \mathcal{E}^{\square}_{\alpha}$:

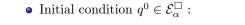
• At
$$t = 0.01(= M)$$
 :



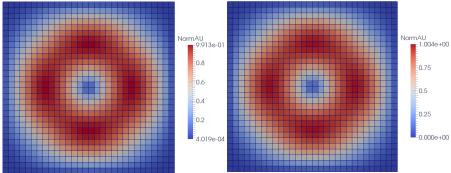
$$Ker \mathbb{L}^h_{\kappa=1,\alpha} \subsetneq \mathcal{E}^\square_\alpha.$$

Modified equation on a cartesian mesh Discrete study on a cartesian mesh Discrete study of the triangular case

Low Mach scheme $(\kappa = 0)$ on a cartesian mesh :



• At
$$t = 0.01(=M)$$
 :



Proposition ($\kappa = 0$ on \Box)

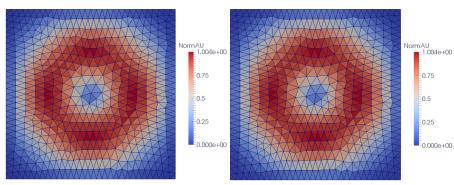
$$Ker \mathbb{L}^h_{\kappa=0,\alpha} = \mathcal{E}^\square_\alpha.$$

Modified equation on a cartesian mesh Discrete study on a cartesian mesh Discrete study of the triangular case

Godunov scheme $(\kappa = 1)$ on a triangular mesh :

• Initial condition $q^0 \in \mathcal{E}_{\alpha}^{\Delta}$:

• At t = 0.01(= M) :



Proposition ($\kappa = 1$ on \triangle)

$$Ker \mathbb{L}^h_{\kappa=1,\alpha} = \mathcal{E}^{\triangle}_{\alpha}.$$

Conclusion on the discrete study of the kernel of the Godunov scheme

Conclusion:

- The Godunov scheme (κ = 1) does not preserve some incompressible states 𝔅[□]_α on a cartesian mesh.
- The low Mach scheme (κ = 0) preserves the incompressible states 𝔅[□]_α on a cartesian mesh.
- The Godunov scheme ($\kappa = 1$) preserves the incompressible states $\mathcal{E}_{\alpha}^{\triangle}$ on a triangular mesh.

BUT :

- We wish a correction that allows to obtain the Godunov scheme when the Mach number tends to 1.
- What happens if the initial condition $q^0 \notin \mathcal{E}_{\alpha}$?
- The study of the kernel \mathcal{E}_{α} is not sufficient.

Hodge decomposition and projection on \mathcal{E}_{α}

How can we split a state $q \notin \mathcal{E}_{\alpha}$?

Theorem

Assume that $\alpha \in [\alpha_{\min}, \alpha_{\max}]$ with $\alpha_{\min} > 0$. We build a Hodge decomposition on the weighted spaces

$$\mathcal{E}_{\alpha} \oplus \mathcal{E}_{\alpha}^{\perp} = L_{\alpha}^{2} \left(\mathbb{T} \right)^{3},$$

where the acoustic space $\mathcal{E}_{\alpha}^{\perp}$ is given by

$$\mathcal{E}_{\alpha}^{\perp} = \left\{ q = (r, \boldsymbol{u})^{T} \in L_{\alpha}^{2} \left(\mathbb{T} \right)^{3} \Big| \int_{\mathbb{T}} r \alpha dx = 0 \text{ and } \exists \phi \in H_{\alpha}^{1} \left(\mathbb{T} \right), \boldsymbol{u} = \nabla \phi \right\}$$

Definition

The Hodge decomposition allows to define an orthogonale projection \mathbb{T}^2 (TT)³

$$\mathbb{P}_{\alpha}: \ L^{2}_{\alpha}\left(\mathbb{T}\right)^{3} \longrightarrow \mathcal{E}_{\alpha}$$
$$q \longmapsto \mathbb{P}_{\alpha}q$$

Structure of the solution of the linear wave equation

Linear wave equation with porosity

$$\begin{cases} \partial_t(\alpha r) + \frac{a_\star}{M} \nabla \cdot (\alpha \mathbf{u}) = 0, \\ \partial_t(\alpha \mathbf{u}) + \frac{a_\star}{M} \alpha \nabla r = 0. \end{cases}$$

Proposition

If q is a solution of the linear wave equation with porosity with an initial condition q^0 , we have

$$\forall q^0 \in \mathcal{E}_{\alpha}, \quad q(t \ge 0) = q^0 \in \mathcal{E}_{\alpha} \quad et \quad \forall q^0 \in \mathcal{E}_{\alpha}^{\perp}, \quad q(t \ge 0) \in \mathcal{E}_{\alpha}^{\perp}.$$

Corollary

The solution q of the linear wave equation with porosity with an initial condition q^0 can be written as

$$q = \mathbb{P}_{\alpha}q^{0} + (q - \mathbb{P}_{\alpha}q^{0}) \in \mathcal{E}_{\alpha} + \mathcal{E}_{\alpha}^{\perp}.$$

Structure of the solution of the linear wave equation

Linear wave equation with porosity

$$\begin{cases} \partial_t(\alpha r) + \frac{a_\star}{M} \nabla \cdot (\alpha \mathbf{u}) = 0, \\ \partial_t(\alpha \mathbf{u}) + \frac{a_\star}{M} \alpha \nabla r = 0. \end{cases}$$

Proposition

The energy of the solution q of the linear wave equation with porosity satisfies

$$\frac{d}{dt} \|q\|_{L^2_{\alpha}}^2 = 0.$$

Corollary

The solution q of the linear wave equation with porosity and with an initial condition q^0 satisfies

$$\forall C>0, \ \|q^0-\mathbb{P}_{\alpha}q^0\|_{L^2_{\alpha}}\leq CM \Rightarrow \forall t\geq 0, \ \|q-\mathbb{P}_{\alpha}q^0\|_{L^2_{\alpha}}(t)\leq CM.$$

Accurate schemes at low Mach number

- We transcribe this property at the discrete level for short time.
- We build Hodge decompositions on triangular and cartesian meshes.
- We obtain discrete orthogonal projections \mathbb{P}^h_{α} on $\mathcal{E}^{\square}_{\alpha}$ and $\mathcal{E}^{\triangle}_{\alpha}$.

Definition

A scheme is accurate at low Mach number if the solution q_h given by the scheme satisfies

$$\begin{aligned} \forall C_1, C_2 > 0, \ \exists C_3(C_1, C_2) > 0, \ \|q_h^0 - \mathbb{P}^h_\alpha q_h^0\|_{l^2_\alpha} &= C_1 M \\ \Rightarrow \forall t \in [0; C_2 M], \ \|q_h - \mathbb{P}^h_\alpha q_h^0\|_{l^2_\alpha}(t) \le C_3 M, \end{aligned}$$

where C_3 does not depend on M.

Initial condition :

- $a_{\star} = 1$.
- $M = 10^{-4}$.
- $q_h^0 = q_{h,1}^0 + \mathbf{M} q_{h,2}^0$ with

$$\begin{cases} r_{h,1}^0(x,y) = 1, \\ (\alpha \mathbf{u}_1)_h^0 = \nabla_h \times \psi_h, \end{cases} \Rightarrow q_{h,1}^0 \in \mathcal{E}_{\alpha}^h \end{cases}$$

and

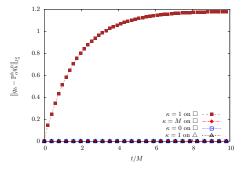
$$\begin{cases} r_{h,2}^{0}(x,y) = 0, \\ \mathbf{u}_{h,2}^{0} = \nabla_{h}\phi_{h}, \quad \Rightarrow q_{h,2}^{0} \in \left(\mathcal{E}_{\alpha}^{h}\right)^{\perp} \\ \|q_{h,2}^{0}\|_{l_{\alpha}^{2}} = 1, \end{cases}$$

then

$$\|q_h^0 - \mathbb{P}_{\alpha} q_h^0\|_{l_{\alpha}^2} = \|Mq_{h,2}^0\|_{l_{\alpha}^2} = M = O(M).$$

• We plot $||q_h - \mathbb{P}_{\alpha} q_h^0||_{l^2_{\alpha}}(t)$ as a fonction of the time.

Cartesian mesh with $\Delta x = \Delta y = 0.02$ and $M = 0.0001 \ll \Delta x$:

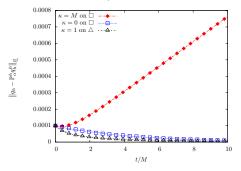


Theorem ($\kappa = 1$ on \Box)

 $\begin{aligned} \forall C_1 > 0, \ \exists C_2(C_1) > 0, \ \exists C_3(C_1) > 0, \ \|q_h^0 - \mathbb{P}^{h,\square}_{\alpha} q_h^0\|_{l^2_{\alpha}} = C_1 M \\ \Rightarrow \forall t \ge C_2 M, \ \|q_h - \mathbb{P}^{h,\square}_{\alpha} q_h^0\|_{l^2_{\alpha}}(t) \ge C_3 \min(\Delta x, \Delta y), \end{aligned}$

for all $M \leq \frac{C_3}{C_1} \min(\Delta x, \Delta y)$.

Cartesian mesh with $\Delta x = \Delta y = 0.02$ and $M = 0.0001 \ll \Delta x$:

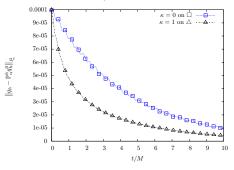


Theorem ($\kappa = M$ on \Box)

 $\begin{aligned} \forall C_1, C_2 > 0, \ \exists C_3(C_1, C_2) > 0, \ \|q_h^0 - \mathbb{P}^{h, \square}_{\alpha} q_h^0\|_{l^2_{\alpha}} &= C_1 M \\ \Rightarrow \forall t \in [0; C_2 M], \ \|q_h - \mathbb{P}^{h, \square}_{\alpha} q_h^0\|_{l^2_{\alpha}}(t) \le C_3 M, \end{aligned}$

where C_3 does not depend on M.

Cartesian mesh with $\Delta x = \Delta y = 0.02$ and $M = 0.0001 \ll \Delta x$:

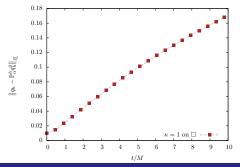


Theorem ($\kappa = 1$ on \triangle et $\kappa = 0$ sur \Box)

$$\begin{aligned} \forall C_1, C_2 > 0, \ \exists C_3(C_1, C_2) > 0, \ \|q_h^0 - \mathbb{P}^h_\alpha q_h^0\|_{l^2_\alpha} &= C_1 M \\ \Rightarrow \forall t \ge 0, \ \|q_h - \mathbb{P}^h_\alpha q_h^0\|_{l^2_\alpha}(t) \le C_3 M, \end{aligned}$$

where C_3 does not depend on M.

Cartesian mesh on $\Delta x = \Delta y = 0.0033$ and $M = 0.01 \gg \Delta x$:



Theorem ($\kappa = 1$ on \Box)

$$\begin{aligned} \forall C_0, C_1, C_2 > 0, \exists C_3(C_0, C_1, C_2) > 0, \begin{cases} \Delta x \le C_0 M, \ et \ \Delta y \le C_0 M, \\ \|q_h^0 - \mathbb{P}_{\alpha}^h q_h^0\|_{l^2_{\alpha}} = C_1 M \\ \Rightarrow \forall t \in [0; C_2 M], \ \|q_h - \mathbb{P}_{\alpha}^h q_h^0\|_{l^2_{\alpha}} (t) \le C_3 M, \end{aligned}$$

where C_3 does not depend on M, Δx and Δy .

Conclusion of the linear case

Triangular mesh :

• The Godunov scheme $(\kappa = 1)$ is accurate at low Mach.

Cartesian mesh :

- The Godunov scheme $(\kappa = 1)$
 - is not accurate at low Mach number if $M \ll \min(\Delta x, \Delta y)$.
 - is accurate at low Mach number if $M \gg \min(\Delta x, \Delta y)$.

• Two corrections for low Mach flows :

$$F^{Cor}(W_i, W_j) = F^{God}(W_i, W_j) - \frac{(1-\kappa)a_{\star}\alpha_i}{2M\alpha_{ij}} \begin{pmatrix} 0 \\ \left[\left((\alpha \mathbf{u})_i - (\alpha \mathbf{u})_j \right) \cdot \mathbf{n}_{ij} \right] \mathbf{n}_{ij} \end{pmatrix}$$

- $\kappa = 0$ (low Mach correction) : accurate at low Mach,
- $\overline{\kappa = \min(M, 1)}$ (all Mach correction) : accurate at low Mach and allows to obtain the Godunov scheme for $M \ge 1$.

Next step :

• Test the different schemes in the non-linear case.

Correction at low Mach number in the non-linear case with $\alpha = 1$

Barotropic Euler equations :

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0, \\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p = 0. \end{cases}$$

Nous notons $W = (\rho, \rho \mathbf{u})^T$. The numerical scheme can be written as

$$\frac{d}{dt}W_i + \frac{1}{|\Omega_i|} \sum_{\Gamma_{ij} \subset \partial \Omega_i} |\Gamma_{ij}| F(W_i, W_j, \mathbf{n}_{ij}) = 0.$$

The **low Mach** and the **all Mach** corrections consist to replace the flux $F(W_i, W_j, \mathbf{n}_{ij})$ with

$$F^{Cor}(W_i, W_j) = F^{Roe}(W_i, W_j) - \frac{(1 - \kappa_{ij})\rho_{ij}c_{ij}}{2} \begin{pmatrix} 0\\ [(\mathbf{u}_i - \mathbf{u}_j) \cdot \mathbf{n}_{ij}] \mathbf{n}_{ij} \end{pmatrix}$$

where respectively $\kappa_{ij} = 0$ or $\kappa_{ij} = \min\left(1, \frac{|u_{ij}|}{c_{ij}}\right)$.

4 shocks

• The initial state is given by

$$(\rho, u_x, u_y)(x, y) = \begin{cases} (0.1380, 1.206, 1.206), & \text{for } x < 0.5, & y < 0.5\\ (0.5323, 0.000.1.206), & \text{for } x > 0.5, & y < 0.5\\ (0.5323, 1.206, 0.000), & \text{for } x < 0.5, & y > 0.5\\ (1.5000, 0.000, 0.000), & \text{for } x > 0.5, & y > 0.5 \end{cases}$$

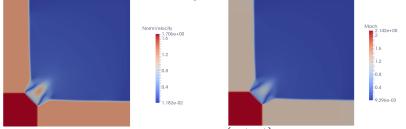
on the domain $[0,1] \times [0,1]$.

- Neumann boundary conditions.
- Final time of computation : $t_{final} = 0.4s$.
- Tools :
 - Mesh : the software Salome,
 - Code : Librairy C++ CDMATH (http://www.cdmath.jimdo.com).

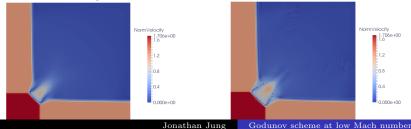
4 shocks:

29/37

• Reference solution (Roe ($\kappa_{ij} = 1$) on a 200 × 200 cartesian grid) :

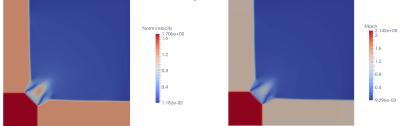


• Roe with $\kappa_{ij} = 1$ and $\kappa_{ij} = \min\left(1, \frac{|u_{ij}|}{c_{ij}}\right)$ on a 100×100 cartesian grid :



4 shocks:

• Reference solution (Roe $(\kappa_{ij} = 1)$ on a 200 × 200 cartesian grid) :



• Roe with $\kappa_{ij} = 0$ on a cartesian and with $\kappa_{ij} = 1$ on a triangular mesh :

The scheme crashes with $\kappa_{ij} = 0!$

Jonathan Jung

Godunov scheme at low Mach number

Vortex :

- We use a perfect gaz law.
- The initial state is given by

$$\begin{split} \rho &= 1, \quad p = 1000 \\ \text{et} \quad \mathbf{u} &= \nabla \times \psi \quad \text{avec} \quad \psi(x,y) = \frac{1}{\pi} \sin^2(\pi x) \sin^2(\pi y) \end{split}$$

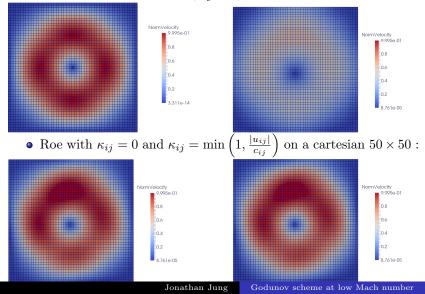
on the domain $[0,1]\times [0,1].$

- Wall boundary conditions.
- Final time of computation : $t_{final} = 0.125s$.

Vortex :

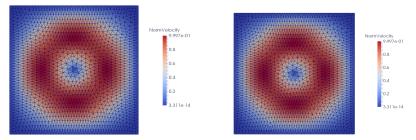
32/37

• Initial condition and Roe ($\kappa_{ij} = 1$) on a 50 × 50 cartesian grid :



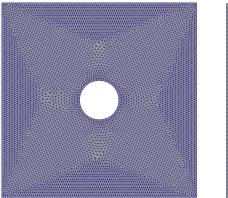
Vortex :

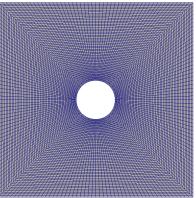
• Initial condition and Roe with $\kappa_{ij} = 1$ on a triangular mesh :



Steady flow around a cylinder

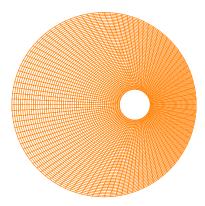
• An advantage of CDMATH is that the code can be run on very complex geometry build with Salome.

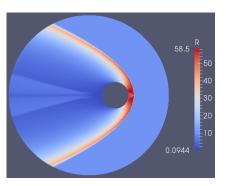




Carbuncle phenomena : supersonic flow around a cylinder

• An advantage of CDMATH is that the code can be run on very complex geometry build with Salome.





Final conclusion and perspective

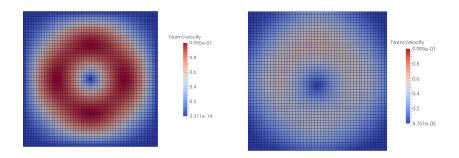
Conclusion :

- We constat the accuracy at low Mach number of finite volume schemes on triangular meshes in the linear and non-linear cases.
- We constat the inaccuracy at low Mach number of the finite volume schemes on cartesian meshes in the linear and non-linear cases.
- The study of the linear case allows to propose a correction that gives an accurate scheme at low Mach number and gives the Godunov scheme when $M \ge 1$ on cartesian meshes.

Perpectives :

- Test the scheme with a non-constant fonction α in the non-linear case.
- Study the stability of the corrected scheme in the non-linear case.

Thank you for your attention!



S. Dellacherie, P. Omnes. On the Godunov scheme applied to the variable cross-section linear equation. FVCA6, (4):313–321, 2011.