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Study case: a shock wave in a
liquid interacting with a gas
bubble.
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Properties of the flow:
two immiscible fluids,
the gas and the water
are compressible.

Aim: develop a robust and
efficient numerical scheme.
Adaptation to GPU cluster.
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Model

We consider the 2D compressible Euler equations:

∂t(ρ) + ∂x(ρu) + ∂y(ρv) = 0,

∂t(ρu) + ∂x(ρu2 + p) + ∂y(ρuv) = 0,

∂t(ρv) + ∂x(ρuv) + ∂y(ρv
2 + p) = 0,

∂t(ρE) + ∂x
(
(ρE + p)u

)
+ ∂y

(
(ρE + p)v

)
= 0,

∂t(ρϕ) + ∂x(ρuϕ) + ∂y(ρvϕ) = 0,

where ρ is the density, (u, v) the velocity vector, E the total
energy and ϕ the gas mass fraction.
The liquid-gas interface is located at the discontinuities of
the gas fraction ϕ. In the liquid, we have ϕ = 0 and in the
gas ϕ = 1.
We have 5 equations for 6 unknowns.
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Equation of states

Galilean invariance of the Euler equations:

p = p(τ, e, ϕ),

where

τ =
1

ρ
,

e = E − u2 + v2

2
.

The pressure p can be given by a stiffened gas law whose
coefficients depend on the gas fraction ϕ

p(τ, e, ϕ) =
(
γ(ϕ)− 1

) e
τ
− γ(ϕ)p∞(ϕ).
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Mixture

At initial time,

Liquid

Gas

Theoretically,

∂tϕ+u∂xϕ+v∂yϕ = 0.

→ ϕ = 0 or ϕ = 1 at
any time.

Numerically, we have diffusion
0 < ϕ < 1.

Liquid

Mixture

Gas

In the mixture, [SA99]
1

γ(ϕ)− 1
= ϕ

1

γgas − 1
+ (1− ϕ)

1

γliq − 1
,

γ(ϕ)p∞(ϕ)

γ(ϕ)− 1
= ϕ

γgasp∞,gas

γgas − 1
+ (1− ϕ)

γliqp∞,liq

γliq − 1
.
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Conservative form

The system admits a conservative form:

∂tW + ∂xF (W ) + ∂yG(W ) = 0,

where

W = (ρ, ρu, ρv, ρE, ρϕ)T ,

F (W ) =
(
ρu, ρu2 + p, ρuv, (ρE + p)u, ρϕu

)T
,

G(W ) =
(
ρv, ρuv, ρv2 + p, (ρE + p)v, ρϕv

)T
.

6/66 Jonathan Jung Computing two fluids flow on GPU



Introduction
First approach : an other pressure law
Second approach: numerical method

GPU and MPI implementation

Equations
Godunov scheme
Stability problems and spurious pressure oscillations

Hyperbolicity of the system

The system is hyperbolic in each direction [GR91]. For each
n = (n1, n2)

T , the matrix n1DWF (W ) + n2DWG(W ) is
diagonalizable with real eigenvalues on the domain

Ω :=
{
W ∈ R5, ρ > 0, ϕ ∈ [0; 1], p (τ, e, ϕ) + p∞(ϕ) > 0

}
,

and admits the eigenvalues:

λ1 = (u, v)T .n−c, λ2 = λ3 = λ4 = (u, v)T .n, λ5 = (u, v)T .n+c,

where for W ∈ Ω, the sound speed c is given by

c(τ, e, ϕ) =
√
γ(ϕ)τ

(
p (τ, e, ϕ) + p∞(ϕ)

)
.
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Non convexity of the hyperbolic set Ω

Gas
Liquid

Ω is not a convex set.
Ωϕ=0 and Ωϕ=1, defined by

Ωϕ=ϕ0 :=
{
W ∈ R5, ρ > 0, ϕ = ϕ0, p (τ, e, ϕ0) + p∞(ϕ0) > 0

}
,

are convex sets.
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Aim

For approximating the 2D system, we consider directional
splitting (Godunov [G59], Strang [S68]).
→ We solve successively the 1D systems

∂tW + ∂xF (W ) = 0, ∂tW + ∂yG(W ) = 0.

From rotational invariance we only have to construct an
approximation of

∂tW + ∂xF (W ) = 0, x ∈ [a; b], t > 0,

W (x, 0) = W0(x),

with some boundary conditions at a and b.
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Riemann problem

Riemann problem

∂tW + ∂xF (W ) = 0,

W (x, 0) =

{
WL, if x < 0,

WR, otherwise.

Even if Ω is not convex, there exists only one, self-similar,
global, entropy solution [GR91]

W (x, t) = R(WL,WR, x/t).

It is entirely defined by 4 constant states WL, W1 ∈ Ωϕ=ϕL ,
W2 ∈ Ωϕ=ϕR and WR separated by self-similar waves:
rarefaction, shock or contact.
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Structure of the solution to the Riemann problem

x

t

Example of solution to the Riemann problem R(WL,WR, x/t):
a 1-rarefaction, a 2,3,4-contact and a 5-shock.
The exact solution lies in the non convex set Ωϕ=ϕL ∪ Ωϕ=ϕR .
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Godunov scheme

We consider a space step ∆x = b−a
N and points

xi− 1
2

= a+ i×∆x.

The cell (or finite volume) Ci is the interval ]xi− 1
2
;xi+ 1

2
[.

We note xi the middle of the cell Ci

xi =
xi− 1

2
+ xi+ 1

2

2
.

We start with a piecewise constant approximation of
W (x, 0) made of cell averages

W 0
i =

1

∆x

∫
Ci

W (x, 0)dx.
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Time evolution of the Godunov scheme

We compute the exact 

solution of 

First step :

Averaging step
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Stability issue: Ω is not convex

The exact solution V (x,∆t) ∈ Ω for all x ∈ [a; b].
As Ω is not convex, the averaging

Wn+1
i =

1

∆x

∫
Ci

V (x,∆t)dx,

may produce values outside Ω.

For example:

Quantities x < 0 x > 0

ρ(kg.m−3) 10 1
u(m.s−1) −50 0
p(Pa) 1 1
ϕ 1 0
γ 4.4 3

p∞(Pa) 1000 0

see also [MHB10].
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Spurious pressure oscillations at the two-fluid interface

Regardless of the stability problem, we observe velocity-pressure
spurious oscillations at the two-fluid interface [A88].

For example, with

Quantities x < 0 x > 0

ρ(kg.m−3) 10 1

u(m.s−1) 50 50
p(Pa) 1e5 1e5
ϕ 1 0
γ 1.4 1.1

p∞(Pa) 0 0

we obtain:
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Aim of the thesis

Solve the stability problems due to the non convexity of Ω
for a stiffened gas pressure law.

Solve the problem of the pressure oscillations at the
two-fluid interface.

Extend the method to study the oscillations of a spherical
bubble of gas in a liquid phase (well-balanced solver).
→ Not presented here.

Develop a robust and efficient 2D numerical scheme.

Implement the numerical scheme on Graphics Processing
Units (GPU) and on GPU clusters.
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How to remove the spurious pressure oscillations?

Previous works on the spurious pressure oscillations issue:
use a Eulerian approach with a non conservative flux at
the two-fluid interface (Abgrall [A88], Karni [Ka94], Fedkiw
[F99], Saurel-Abgrall [SA99], Abgrall-Karni [AK01], etc),
use a Lagrangian-projection scheme and project the
pressure at interface (Barberon-Helluy-Rouy [BHR07],
Chalons-Coquel [CC10]). The projection is non
conservative.

→ We obtain non conservative schemes.
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How to remove the stability problems?

Previous works on the lack of stability caused by the
non-convexity of the hyperbolic set:

Other pressure law (Callen [C85], Croisille [C91],
Chanteperdrix, Villedieu and Vila [CVV02], etc).
→ The proof of convexity is not provided.
Chalons and Goatin [CG08] proposed a numerical method
with a random sampling for computing phase transitions in
traffic flow modeling.
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How to solve these two issues?

First approach: construct another pressure law p̃ to obtain
a convex domain of hyperbolicity Ω̃.
→ Stable and conservative numerical scheme but the

spurious pressure oscillations are not removed.

Second approach: keep a stiffened gas pressure law for the
liquid and the gas and use a numerical strategy in order to
avoid diffusion on ϕ and to preserve the non convex domain
Ω.
→ Stable and conservative numerical scheme without

spurious pressure oscillations.
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First approach: construct an other pressure law p̃(τ, e, ϕ)
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Procedure

The gas (resp. the liquid) is described by the massic
entropy s1 = s1(τ1, e1) (resp. s2 = s2(τ2, e2)) linked to the
pressure pi of phase i

pi (τi, ei) =
∂τisi
∂eisi

.

The mixture pressure p̃(τ, e, ϕ) is derived from the mixture
entropy s = s(τ, e, ϕ) by the relation

p̃ (τ, e, ϕ) =
∂τs

∂es
.

→ We need a procedure for constructing the mixture
entropy s from s1 and s2.
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Mixture entropy and pressure law

At equilibrium, the immiscible mixture entropy s(τ, e, ϕ) is
given by

s(τ, e, ϕ) = sup
0≤α,z≤1

(
ϕs1

(α
ϕ
τ,
z

ϕ
e
)

+ (1− ϕ)s2

(1− α
1− ϕ

τ,
1− z
1− ϕ

e
))

.

From p̃ = ∂τ s
∂es
, we deduce the pressure law

p̃(τ, e, ϕ) =
(
γ(τ, e, ϕ)− 1

) e
τ
− γ(τ, e, ϕ)p∞(τ, e, ϕ).

In the liquid (p∞,liq > 0, ϕ = 0), the pressure law is
modified, even if there is no gas. Indeed

p̃(τ, e, 0) =

{
0 , if e ≤ γliqp∞,liq

γliq−1 τ,

(γliq − 1) eτ − γliqp∞,liq, otherwise.
6= pliq(τ, e).

→ Negative pressure are replaced by 0.
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Properties of the system with the mixture pressure p̃

With the mixture entropy s, we construct a Lax entropy

Ω̃→ R,

W = (ρ, ρu, ρv, ρE, ρϕ) 7→ − ρs
(1

ρ
,
2ρE − (ρu)2 + (ρv)2

2ρ
, ϕ
)
,

for the system ∂tW + ∂xF (W ) = 0 coupled with p̃.
Here, Ω̃ is a convex set.

From Mock theorem, we deduce the hyperbolicity of the
system

∂tW + ∂xF (W ) = 0,

coupled with p̃(τ, e, ϕ) on the convex set Ω̃.
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Advantages and drawbacks of p̃

Advantage:
Ω̃ is convex
→ the Godunov scheme is conservative and stable.

Drawback:
For some parameters, the
liquid degenerates to a
pressureless gas.
→ Theoretical and numerical

difficulties.
The problem of the spurious
oscillations at the two-fluid
interface is not solved.

→ We decide to concentrate
on the second idea.

−→
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Second approach: construct a numerical method to
preserve the non convex domain Ω
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Problem of the Godunov scheme

Now, the gas and the liquid satisfy stiffened gas pressure
law again.
Godunov scheme:

We compute the exact 

solution of 

First step :

Averaging step

→ V (x,∆t) lies in the non convex set Ω.
→ spurious pressure oscillations and lack of stability arise from
the averaging step.

Conclusion: replace the averaging step.
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Glimm scheme [G65]

We take a pseudo-random number ωn ∈ [0; 1[ and we replace the
averaging step of the Godunov scheme.

We compute the exact 

solution of 

First step :

Averaging step
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Advantages and drawbacks of the Glimm scheme

Advantages:
It does not introduce numerical mixture.
No spurious pressure oscillations at the two-fluid interface.
It is stable, it preserves the hyperbolic set without diffusion

Ωϕ=0 ∪ Ωϕ=1.

Drawbacks:
Exact Riemann solver needed.
Noisy rarefaction waves.
No extension to higher dimensions (Colella [C78]).

→ We do not follow this approach and introduce the class of the
ALE-projection scheme.
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ALE-projection scheme

The Arbitrary Lagrangian Eulerian (ALE)-projection scheme
includes two steps:

the ALE-step: we solve the problem on a moving mesh
between time tn and tn+1,−.

The boundary x
i+ 1

2

moves at an arbitrary velocity ξn
i+ 1

2

between tn and tn+1,−

xn+1,−
i+ 1

2

= xi+ 1
2

+ ∆t ξni+ 1
2
.

We obtain a constant piecewise approximation Wn+1,− of
W (·, tn+1) on cells

Cn+1,−
i =

]
xn+1,−
i+ 1

2

;xn+1,−
i+ 1

2

[
,

the projection step: we project Wn+1,− on the original cell
Ci.
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Structure of ALE-projection scheme

ALE Step:

Remapping Step:
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ALE step: expression of W n+1,−
i

Wn+1,−
i is given by the finite volume scheme

∆xn+1,−
i Wn+1,−

i = ∆xWn
i −∆t

(
F (Wn

i ,W
n
i+1, ξ

n
i+ 1

2

)

−F (Wn
i−1,W

n
i , ξ

n
i− 1

2

)
)

where ∆t satisfies some CFL condition and F (WL,WR, ξ) is the
numerical flux, given by

F (WL,WR, ξ) = F
(
R(WL,WR, ξ)

)
− ξR(WL,WR, ξ).

We have to choose:
the boundary velocity ξn

i+ 1
2

,

the projection to go back to the original grid.
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Lagrange + Glimm remap

We choose ξn
i+ 1

2

= u∗ where u∗ is the contact discontinuity
velocity in the resolution of the Riemann problem
R(Wn

i ,W
n
i+1, ·).

We perform a random sampling

Wn+1
i = Wn+1,−(xi− 1

2
+ ωn∆x,∆t),

where ωn ∈ [0; 1[ is a pseudo-random number.

Properties of the scheme:
constant velocity-pressure states are preserved,
stability of the non convex hyperbolic set Ωϕ=0 ∪ Ωϕ=1,

BUT...
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Lagrange + Glimm remap: BV instabilities

We consider the following
shock-interface interaction

Quantities x < −4 −4 < x < 1 x > 1

ρ(kg.m−3) 3.488 2 1

u(m.s−1) 1.13 −1 −1
p(Pa) 23.33 2 2
ϕ 1 1 0
γ 1.4 1.4 2

p∞(Pa) 0 0 7

We observe BV instabilities
due to the strong shock:
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ALE+Glimm projection

We choose to move the boundary xi+ 1
2
at the speed of the

fluid only at the two-fluid interface

ξn
i+ 1

2

=

{
u∗
i+ 1

2

if
(
ϕni − 1

2

) (
ϕni+1 − 1

2

)
< 0,

0 otherwise.

We perform a random sampling

Wn+1
i = Wn+1,−(xi− 1

2
+ ωn∆x,∆t),

where ωn ∈ [0; 1[ is a pseudo-random number.

→ We denote this scheme the "Random Scheme" (RS).
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Results with the Random Scheme (RS)

No spurious pressure
oscillations at the two-fluid
interface:

No BV instabilities:
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Properties of the Random Scheme

The Random Scheme has the following properties:
it preserves hyperbolic set without diffusion Ωϕ=0 ∪ Ωϕ=1,
it does not diffuse the gas mass fraction ϕ,
it is statistically conservative,
it satisfies statistically a discrete entropy inequality,
it does not introduce spurious oscillations at the two-fluid
interface,
it handles vacuum.
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A 1D test: comparison with other schemes

We compare the Random Scheme with other schemes:
the "Ghost Fluid for the poor" (GF) algorithm of
Abgrall-Karni [AK01],
the "SA" algorithm of Saurel-Abgrall [SA99],
the "NonConsPhi" scheme that includes two steps:

a Lagrangian step: as the Lagrange + Glimm scheme,
a projection step: we use a conservative projection for ρ,
ρu, ρv and ρE and for ϕ, we take:
ϕn+1
i = ϕn+1,−

i − ∆t

∆x

(
max(ui− 1

2
, 0)(ϕn+1,−

i − ϕn+1,−
i−1 )

+ min(ui+ 1
2
, 0)(ϕn+1,−

i+1 − ϕn+1,−
i )

)
.

the "CC" algorithm of Chalons-Coquel [CC10].
Lagrange-projection scheme with a projection of the
pressure and a random sampling on ϕ at the two-fluid
interface.

37/66 Jonathan Jung Computing two fluids flow on GPU



Introduction
First approach : an other pressure law
Second approach: numerical method

GPU and MPI implementation

Glimm scheme
ALE-projection scheme
Random Scheme
2D Random Scheme

A 1D test

We test the Random Scheme on a water-air shock tube with
discontinuous normal velocity.

Initial condition:

Quantities x<0.2 x>0.2

ρ(kg.m−3) 1000 50

u(m.s−1) 0 0

v(m.s−1) 1000 −5000
p(Pa) 1e9 1e5
ϕ 0 1
γ 4.4 1.4

p∞(Pa) 6.8e8 0

We plot the numerical and
the exact solution at time
t = 240µm with 1000 cells:
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Conservation of the total mass (gas+liquid) until 240µs

→ Error less than 0.1%.
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Conservation of the mass of gas until 240µs
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Conservation of the total energy until 240µs
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Extension to 2D with directional splitting

For solving {
∂tW + ∂xF (W ) + ∂yG(W ) = 0,

W (x, y, t = 0) = W0(x, y),

between time t = 0 and t = ∆t, we use directional splitting
(Godunov [G59] or Strang [S68]).

Colella [C78] showed that the directional splitting coupled
with the Glimm scheme does not converge (because of the
nonlinear waves).
→ Does the directional splitting work with the Random

Scheme ?
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Test of Zalesak [Z79]

We consider a solid body rotation. We choose

u = −Ω(y − y0), v = Ω(x− x0),

where Ω = 2π
628 is the angular velocity and (x0, y0) is the axis of

rotation.

Initial time:
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Test of Zalesak [Z79]: 1
2 revolution

Random Scheme: Conservative scheme:
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Test of Zalesak [Z79]: 5 revolutions

Random Scheme: Conservative scheme:
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Shock bubble interaction (water/gas)

We consider the shock-bubble
interaction test of [KL2010]

Gas

Liquid

pre-shock
Left liquid

state

Futur 

shock

Y1

Y2

Y3

y

x

The initial data are:

Quantities Y1 Y2 Y3

ρ(kg.m−3) 1030.9 1000 1

u(m.s−1) 300 0 0

v(m.s−1) 0 0 0
p(Pa) 3.0e9 1.0e5 1.0e5
ϕ 0 0 1
γ 4.4 4.4 1.4

p∞(Pa) 6.8e8 6.8e8 0

Final time=450µs.
Grid: 14 000× 7 000.
Time of computation on
GPU (AMD Radeon
HD7970): ≈ 1h.
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Density ρ at 450µs: Random Scheme
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Density ρ at 450µs: NonConsPhi scheme
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Zoom at 450µs

Random Scheme: NonConsPhi scheme:

→ Different shapes with the two algorithms.
49/66 Jonathan Jung Computing two fluids flow on GPU



Introduction
First approach : an other pressure law
Second approach: numerical method

GPU and MPI implementation

GPU and OpenCL
2D implementation
Speedup
MPI

GPU and MPI implementation

50/66 Jonathan Jung Computing two fluids flow on GPU



Introduction
First approach : an other pressure law
Second approach: numerical method

GPU and MPI implementation

GPU and OpenCL
2D implementation
Speedup
MPI

What is a GPU?

A modern Graphics
Processing Unit (GPU) is
made of:

Global memory
(≈ 1 GB).
Compute units (≈ 27).

Each compute unit is made
of:

Processing elements
(≈ 8).
Local memory (≈16 kB).

A GPU with 2 Compute
Units and 4 Processing
Elements.
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Programming rules on GPU

The same program can be executed on all the processing
elements at the same time.

All the processing elements have access to the global
memory.
The processing elements have only access to the local cache
memory of their compute unit.
The access to the global memory is slow while the access to
the local memory is fast.
The access to global memory is much faster if two
neighboring processing elements read (or write) into two
neighboring memory locations.
→ this is called "coalescent memory access".
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OpenCL

OpenCL means “Open Computing Language”. It includes:
A library of C functions, called from the host, in order to
drive the GPU.
A C-like language for writing the kernels that will be
executed on the processing elements.

Virtually, it allows to have as many compute units
(work-groups) and processing elements (work-items) as
needed.
The threads are sent to the GPU thanks to a mechanism of
command queues on the real compute units and processing
elements.
Portable: the same program can run on a multicore CPU
and a GPU. It is also possible to manage several devices in
the same program.
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Implementation in 2D

Initialization: we initialize the data on the CPU and we
send all the data to the global memory of the GPU.
For each time step:

We associate to each row of the grid a work-group and to
each cell of the row a virtual processor (work-item). We
perform the flux computations and projections in the x
direction for each work-group.
We "transpose": we exchange the ρu and ρv components
and we reorganize the data such that the x and y
coordinates are exchanged.
We perform the flux computations and projections in the y
direction for each work group. Thanks to the transposition,
the memory access is coalescent.
We transpose to have the correct value in the correct place
for the next time step.

We send all the data to the CPU for post-processing.
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Relaxation solver

F (WL,WR, ξ) = F (R(WL,WR, ξ))− ξR(WL,WR, ξ)
→ to compute the numerical flux, we need to solve the

exact Riemann solver.
→ It is not efficient on GPU.

We construct a relaxation solveur R̃(WL,WR, ξ). We
extend the Bouchut relaxation solver [B04] to

the two-fluid flow,
the ALE approach,
the projection.

With the relaxation solver R̃, the Random Scheme keeps
the same properties:

it preserve the hyperbolic set Ωϕ=0 ∪ Ωϕ=1,
it is statistically conservative and satisfies a discrete entropy
inequality,
no spurious oscillations,
it handles vacuum.
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Speedup

Implementation on GPU : The computation corresponds to 300
iterations on a grid 1024× 512.

Computation time (s) Speedup
AMD A8 3850 (1 coeur) CPU 527 1
AMD A8 3850 (4 coeurs) CPU 205 2.6
NVIDIA GeForce 320M GPU 56 9.4
AMD Radeon HD5850 GPU 3 175
AMD Radeon HD7970 GPU 2 260

There are two points to obtain this speedup:
we used an optimized transposition to have coalescent
access in x and y directions.
→ 10 times faster with the transposition.
the relaxation solver.
→ 50 times faster on GPU than exact solver.
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OpenGL: video
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The code is very efficient on
GPU.
→ The limiting factor is the

memory of the GPU (1GB).

We introduce Message Passing
Interface (MPI) to consider
finer mesh.

We present the 4 GPUs MPI
implementation for the
following test case

Shock

Air post-

shock

Air pre-

shock

R22 gas 

b-a

d-c

y

x
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Splitting of the domain

We split the domain in
the x direction into 4
subdomains with a small
overlap.

Each GPU is associated
to a subdomain.

d-c

GPU 1 GPU 2 GPU 3 GPU 4

Hôte
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MPI communications

Before each iteration, we have to exchange several layers of cells
between neighboring GPUs.

GPU l-1

GPU l

GPU l+1

Overlap =

1 for classical finite
volume scheme,
2 for ALE-projection
scheme,
5 for ALE-projection
scheme with second
order MUSCL
reconstruction.
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Speedup

Implementation on MPI : Computation on a cluster of 4 cards
AMD Radeon HD7970

Grille 1 GPU 4 GPUs Speedup
2048 × 2048 14 s 14 s 1
4096 × 2048 22 s 16 s 1.4
4096 × 4096 77 s 60 s 1.3
8192 × 4096 150 s ? 61 s 2.5
16384 × 4096 600 s ? 230 s 2.6

→ We can consider finer meshes. The MPI speedup is > 1 but
not optimal. It could be improved by computations and
communications overlap.
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Schock R22/Air interaction: ρ at 600µs

We consider a mesh of 20 000× 5 000 cells.

→ We zoom on the bubble.
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Schock R22/Air interaction: zoom on the bubble
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Schock R22/Air interaction: zoom on the Rayleigh-Taylor
instabilities
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Conclusion and perspective

Conclusion:
We developed a robust algorithm to treat complex two-fluid
compressible flows. The RS has the following properties:

it preserves the hyperbolic set without diffusion Ω0 ∪ Ω1,
it is statistically conservative and satisfies a discrete entropy
inequality.

The code is very efficient on GPU+MPI, we need only few
minutes to compute a complex flow on a mesh with millions
of cells.

Perspectives:
Extend the code in 3D.
Test the Random Scheme with the "hyperbolic convex"
pressure law p̃.

Extend the approach to low Mach number flows.
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Thank you for your attention!
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