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Model

We consider the Euler equations in 1D:

∂t(ρ) + ∂x (ρu) = 0,

∂t(ρu) + ∂x (ρu2 + p) = 0,

∂t(ρE ) + ∂x ((ρE + p)u) = 0,

∂t(ρϕ) + ∂x (ρϕu) = 0,

where ρ is the density, u the velocity, E the total energy, ϕ the
fraction of mass of gas and p satisfies a mixture stiffened gas
pressure law:

p(ρ, e, ϕ) = (γ(ϕ)− 1)ρe − γ(ϕ)π(ϕ),

where

e = E − 1

2
u2.

Jonathan Jung Computing bubble oscillations on GPU



Model and numerical scheme in 1D
Model and numerical scheme in 2D

How to implement on GPU?
Application on studying bubble oscillation

Equations
Lagrangian step
Remapping step
Properties of the scheme

Mixture law

We have
∂tϕ+ u∂xϕ = 0

⇒ theoricaly ϕ is in {0, 1} at any time.

Numerically we have diffusion, we define a mixture pressure
law with mixture parameters

1

γ(ϕ)− 1
= ϕ

1

γ2 − 1
+ (1− ϕ)

1

γ1 − 1
,

γ(ϕ)π(ϕ)

γ(ϕ)− 1
= ϕ

γ2π2

γ2 − 1
+ (1− ϕ)

γ1π1

γ1 − 1
.

We define the speed of sound

c =

√
γ
p + π

ρ
.
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Model

We can write the system in the conservative form:

∂tW + ∂xF (W ) = 0,

where the vector of conservative variables is:

W = (ρ, ρu, ρE , ρϕ)T ,

and the conservative flux is:

F (W ) = (ρu, ρu2 + p, (ρE + p)u, ρϕu)T .

This system is hyperbolic with the four eigenvalues
λ1 = u − c , λ2 = λ3 = u and λ4 = u + c .

Jonathan Jung Computing bubble oscillations on GPU



Model and numerical scheme in 1D
Model and numerical scheme in 2D

How to implement on GPU?
Application on studying bubble oscillation

Equations
Lagrangian step
Remapping step
Properties of the scheme

Stucture of the scheme

The scheme includes two step:

the Lagrangian step to solve the system ∂tW + ∂xF (W ) = 0,
between time tn and tn+1,−,
the remapping step to compute the Euler variable at time
tn+1.

Lagrange Step:

Remapping Step:
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Some notation

We propose a first order finite volume scheme with a
Lagrangian approach, the boundary x

i+ 1
2

moves at the

velocity of the fluid un
i+ 1

2

between tn and tn+1,−:

xn+1,−
i+ 1

2

= xn
i+ 1

2
+ ∆t un

i+ 1
2
.
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Finite volume scheme

Lagrange Step:Q

The integration of ∂tW + ∂xF (W ) = 0 on the space-time
quadrilateral Q gives:

∆xn+1,−
i W n+1,−

i −∆xW n
i +∆t

(
F (W n

i ,W
n
i+1)− F (W n

i−1,W
n
i )
)

= 0

where F (WL,WR) is the Lagrangian flux and ∆t satisfies the CFL
condition.
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Lagrangian flux

We recall that the Lagrangian flux is:

F (W n
i ,W

n
i+1) : = F (W n

i+ 1
2
)− un

i+ 1
2
W n

i+ 1
2
,

= (0, pn
i+ 1

2
, un

i+ 1
2
pn

i+ 1
2
, 0)T .

For computing the i + 1/2 quantities, we can use an exact
Riemann solver or the acoustic Riemann solver [?] given by

un
i+ 1

2
=

un
i + un

i+1

2
− 1

2ρ̃c
(pn

i+1 − pn
i ),

pn
i+ 1

2
=

pn
i + pn

i+1

2
− ρ̃c

2
(un

i+1 − un
i ),

where ρ̃c =
√

max(ρLc
2
L , ρRc

2
R) min(ρL, ρR).
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Remapping step

The Lagrangian step is done: we have W n+1,−
i .

Problem: how to do the projection to go back to the original
grid?

Lagrange Step:

Remapping Step:
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Classical projection: averaging projection

We take:

W n+1
i = W n+1,−

i − ∆t
∆x (max(ui− 1

2
, 0)(W n+1,−

i −W n+1,−
i−1 )

+ min(ui+ 1
2
, 0)(W n+1,−

i+1 −W n+1,−
i )).

Problem: We consider

Quantities Left Right

ρ(kg .m−3) 10 1

u(m.s−1) 50 50

p(Pa) 1.1e5 1e5

ϕ 1 0

γ 1.4 1.1

π 0 0

We obtain oscillations on the
pressure:
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Glimm projection

We choose a random point in the cells. According to the position
of this point, we pick-up the corresponding value in the Lagrangian
mesh.
More precisely, let ωn be an random number ∈ [0; 1[ and we take
(see [?]):

W n+1
i =


W n+1,−

i−1 , if xi− 1
2

+ ωn∆x < xn+1,−
i− 1

2

,

W n+1,−
i , if xn+1,−

i− 1
2

≤ xi− 1
2

+ ωn∆x ≤ xn+1,−
i+ 1

2

,

W n+1,−
i+1 , if xi− 1

2
+ ωn∆x > xn+1,−

i+ 1
2

.
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Glimm projection

Illustration: We pick up a random number ωn ∈ [0; 1[.

xn+1,−
i− 3

2

≤ xi− 3
2

+ ωn∆x ≤ xn+1,−
i+ 3

2

⇒W n+1
i−1 = W n+1,−

i−1 ,

xi− 1
2

+ ωn∆x < xn+1,−
i− 1

2

⇒W n+1
i−1 = W n+1,−

i−1 ,

xn+1,−
i+ 1

2

≤ xi+ 1
2

+ ωn∆x ≤ xn+1,−
i+ 3

2

⇒W n+1
i−1 = W n+1,−

i−1 .
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Problem: the resulting scheme does not converge

We consider the following
Riemann problem: air shock
wave impinging a liquid
interface

Quantities Left . Right

ρ(kg .m−3) 3.488 1

u(m.s−1) 1.13 −1

p(Pa) 23.33 2

ϕ 1 0

γ 1.4 2

π 0 7

The resulting scheme does not
converge:

Glimm Exact
x(m)

K5 K4 K3 K2 K1 0 1 2
rh
o(
kg

/m
^3

)
1,0

1,5

2,0

2,5

3,0

3,5
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Solution: a mixed projection

We apply the Glimm approach only at the two-fluid interface

If (ϕn
i−1 −

1
2 )(ϕn

i −
1
2 ) < 0 or (ϕn

i −
1
2 )(ϕn

i+1 −
1
2 ) < 0,

We take a random number ωn ∈ [0, 1[, and we take:

W n+1
i =


W n+1,−

i−1 , if xi− 1
2

+ ωn∆x < xn+1,−
i− 1

2

,

W n+1,−
i , if xn+1,−

i− 1
2

≤ xi− 1
2

+ ωn∆x ≤ xn+1,−
i+ 1

2

,

W n+1,−
i+1 , if xi− 1

2
+ ωn∆x > xn+1,−

i+ 1
2

,

else,

W n+1
i = W n+1,−

i − ∆t

∆x
(max(ui− 1

2
, 0)(W n+1,−

i −W n+1,−
i−1 )

+ min(ui+ 1
2
, 0)(W n+1,−

i+1 −W n+1,−
i )).
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Results obtained with the mixed projection

There is no oscillations on
pressure where the averaging
projection failed.
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We have no oscillation on the
density where the Glimm
projection failed:

Mixed projection Exact
x(m)
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Convergence of the mixed projection

We observe the numerical convergence in the L1-norm.
The convergence rate is approximately 0.5 for the Saurel-Abgrall
approach and 0.8 for the mixed projection.

Glimm Mixed projection Saurel-Abgrall

-LOG(h)
2,5 3,0 3,5 4,0

L
O
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Properties of the scheme

There is no diffusion on
ϕ: if ϕ ∈ {0, 1}, this
property is exactly
preserved at any time.
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There is no velocity and
pressure oscillations at
interface:
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Spherical bubble

In spherical coordinates, the model becomes

∂t(Aρ) + ∂x (Aρu) = 0, (1)

∂t(Aρu) + ∂x (A(ρu2 + p)) = pA′(x),

∂t(AρE ) + ∂x (A(ρE + p)u) = 0,

∂t(Aρϕ) + ∂x (Aρϕu) = 0, (2)

where A(x) = x2 appears because of the spherical symmetry.
We can compute bubble oscillations with this model and compare
it to the Keller-Miksis model.
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Preliminary numerical results

Mixed projection with pDxA Keller-Miksis
t(s)
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We consider the 2D Euler equations:

∂t(ρ) + ∂x (ρu) + ∂y (ρv) = 0,

∂t(ρu) + ∂x (ρu2 + p) + ∂y (ρuv) = 0,

∂t(ρv) + ∂x (ρuv) + ∂y (ρv2 + p) = 0,

∂t(ρE ) + ∂x ((ρE + p)u) + ∂y ((ρE + p)v) = 0,

∂t(ρϕ) + ∂x (ρϕu) + ∂y (ρϕv) = 0,

where ρ is the density, u the x-velocity, v is the y-velocity, E the
total energy, ϕ the fraction of mass of gas and p satisfies the
stiffened gas pressure law:

p(ρ, e, ϕ) = (γ(ϕ)− 1)ρe − γ(ϕ)π(ϕ),

where
e = E − (u2 + v2)/2.
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Model

We can write the system in the conservative form:

∂tW + ∂xF (W ) + ∂yG (W ) = 0,

where the vector of conservative variables is:

W = (ρ, ρu, ρv , ρE , ρϕ)T ,

and the conservative fluxes are:

F (W ) = (ρu, ρu2 + p, ρuv , (ρE + p)u, ρϕu)T ,

G (W ) = (ρv , ρuv , ρv2 + p, (ρE + p)v , ρϕv)T .
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Splitting

For solving {
∂tW + ∂xF (W ) + ∂yG (W ) = 0,

W (x , y , t = 0) = W0(x , y),

between time t = 0 and t = ∆t, we use dimensional splitting.

Firstly, we solve{
∂tW + ∂xF (W ) = 0,

W (x , y , t = 0) = W0(x , y),

between time t = 0 and t = ∆t, we obtain W1.

Secondly, we solve{
∂tW + ∂yG (W ) = 0,

W (x , y , t = 0) = W1(x , y),

between time t = 0 and t = ∆t.
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Properties of the scheme

The constructed scheme has the following properties:

if at initial time the x-velocity u, the y-velocity v and the
pressure p are constant, this property is preserved at any time.

if at initial time the fraction of mass of gas ϕ takes only the
two values 0 or 1, this property is exactly preserved at any
time.
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What is a GPU?

A modern Graphics Processing Unit (GPU) is made of:

Global memory (typically 1 Gb)

Compute units (typically 27).

Each compute unit is made of:

Processing elements (typically 8).

Local memory (typically 16 kb)

The same program can be executed on all the processing elements
at the same time.

All the processing elements have access to the global memory

The processing elements have only access to the local memory
of their compute unit.

The access to the global memory is slow while the access to
the local memory is fast.
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Example of a GPU

A (virtual) GPU with 2 Compute Units and 4 Processing Elements
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OpenCL

OpenCL means “Open Computing Language”. It includes:

A library of C functions, called from the host, in order to drive
the GPU.
A C-like language for writing the kernels that will be executed
on the processing elements.

Virtually, it allows to have as many compute units
(work-groups) and processing elements (work-items) as
needed.

The threads are sent to the GPU thanks to a mechanism of
command queues on the real compute units and processing
elements.

Portable: the same program can run on a multicore CPU and
a GPU. It is also possible to manage several devices in the
same program.
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Implementation in 1D

Initialization: we initialize the data on the CPU and we send
all the data to the GPU.

Time step:

Computing W n+1,−
i : we associate to each cell of the grid one

processor (work-item). We compute the fluxes and update the
time step for the next time step.
We wait that all processors have finished.
Update: we apply the mixed projection to obtain W n+1

i .

→ We do that while t < tfinal .

We send all the data to the CPU for post-processing.
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Method for the 2D

We want to use our 1D algorithm.
→ We use the rotationnal invariance of the Euler equations.

As

F (W ) = (ρu, ρu2 + p, ρuv , (ρE + p)u, ρϕu)T ,

G (W ) = (ρv , ρuv , ρv2 + p, (ρE + p)v , ρϕv)T ,

if we note W̃ = (ρ, ρv , ρu, ρE , ρϕ)T , we have

F (W̃ ) = (ρv , ρv2 + p, ρuv , (ρE + p)v , ρϕv)T .

→ We just have to exchange the ρu and ρv place of storage.
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Implementation in 2D

Initialization: we initialize the data on the CPU and we send
all the data to the GPU.
For each time step:

We associate to each row of the grid a work-group and to each
cell of the row a virtual processor (work-item). We perform the
flux computations and projections in the x direction for each
work-group.
We ”transpose”: we exchange the ρu and ρv components and
we reorganize the data such that the x and y coordinates are
exchanged.
We perform the flux computations and projections in the y
direction for each work group. Thanks to the transposition,
the memory access are optimal
We transpose to have the correct value in the correct place for
the next time step.

We send all the data to the CPU for post-processing.
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Shock-bubble interaction

We consider a shock
arriving on a bubble at
velocity σ = 415m.s−1 (see
[?]).

Shock

Post-

shock

Pre-

shock

Y2

Y3

Y1

y

x

The initial data are:

Quantities Y1 Y2 Y3

ρ(kg .m−3) 1.69 1.22 3.86

u(m.s−1) 113.5 0 0

v(m.s−1) 0 0 0

p(Pa) 1.6e5 1.0e5 1.0e5

ϕ 0 0 1

γ 1.4 1.4 1.249

π 0 0 0
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Video

Number of points of the grid = 512× 512 ' 262 000.

Number of unknowns per time step
= Number of points of the grid ×5.
' 1 310 000.
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Numerical results

Final time=0.005s.

The density Masse fraction:
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Numerical results

The x-velocity The y-velocity
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Numerical results

The pressure The interface
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Initial condition

We consider a shock that
comes to a bubble at
velocity σ = 100m.s−1.

Shock

Post-

shock

Pre-

shock

Y2

Y3

Y1

y

x

The initial data are:

Quantities Y1 Y2 Y3

ρ(kg .m−3) 1384 1000 1

u(m.s−1) 27.8 0 0

v(m.s−1) 0 0 0

p(Pa) 2.87e6 1e5 1e5

ϕ 0 0 1

γ 4.4 4.4 1.4

π 4.68e5 4.68e5 0
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Video

Number of points of the grid = 512× 512 ' 262 000.

Number of unknowns per time step
= Number of points of the grid ×5.
' 1 310 000.
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Speedup

Numerical results

Final time=0.0055s.

The density Mass fraction
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Numerical results

The x-velocity The y-velocity
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Numerical results

The pressure The interface
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Speedup

The computation was done with a grid of 256× 256 points with a
the final time is tmax = 0.004.

time (s)

AMD Phenom II x4 945 (1 core) 192

AMD Phenom II x4 945 (4 cores) 59

AMD Radeon HD5850 1.43

NVIDIA GTX 460 2.48

NVIDIA Geforce GTX470 0.93
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A test with liquid and gas
Speedup

Thank you for your attention!
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