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Outline

@ Model and numerical scheme in 1D
© Model and numerical scheme in 2D
© How to implement on GPU?

@ Application on studying bubble oscillation
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Model and numerical scheme in 1D

We consider the Euler equations in 1D:

9e(p) + Ox(pu) 0
dr(pu) + Ox(pu® +p) = 0,
9¢(pE) + Ox((pE + p)u) 0
Ot(pp) + Ox(ppu) = 0,
where p is the density, u the velocity, E the total energy, ¢ the

fraction of mass of gas and p satisfies a mixture stiffened gas
pressure law:

p(ps e, o) = (v(p) — 1)pe —v(p)m(p),

where )
e=F — Euz
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Model and numerical scheme in 1D

step
s of the scheme

Mixture law

@ We have
Orp 4+ udyp =0

= theoricaly ¢ is in {0,1} at any time.
@ Numerically we have diffusion, we define a mixture pressure
law with mixture parameters

1 1 +(1 )
= ¥ — ¢ )
p) -1 72 -1 7 —1
V()7 () Y212 Y11
—— = +(1—¢ .
p) -1 72 -1 ( )71—1
@ We define the speed of sound
p+m
c= :
p
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Model and numerical scheme in 1D

@ We can write the system in the conservative form:
oW + 0y F(W) =0,
where the vector of conservative variables is:
W = (p, pu, pE, pp) ",
and the conservative flux is:
F(W) = (pu, pu® + p, (pE + p)u, ppu)T .

@ This system is hyperbolic with the four eigenvalues
M=u—c, =M =wuand \g =u+c.
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Model and numerical scheme in 1D Equations

Remappir ep
Properties of the scheme

Stucture of the scheme

The scheme includes two step:

e the Lagrangian step to solve the system 0;W + 0, F(W) = 0,
between time t" and "1~

@ the remapping step to compute the Euler variable at time

thrl
rntl 1 n+1
VL‘L Wiwr WiV-L%—l
. . >
Renjr?pping E}ep:
= g
n+l,— n/rn-%— = VV”+1’7 —
| Wity | i i i+1 |
|'. * “‘1 - * i >
At 3 Lagrange Step:
‘\ " Im,+l‘—
n / n no_t
| Wi—l | V_VL | Wit | N
| | | | @
T3 Tio1 Tigl Titg
E Ax
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Model and numerical scheme in 1D Equations
Lagrangian step
Remapping step
Properties of the scheme

Some notation

@ We propose a first order finite volume scheme with a
Lagrangian approach, the boundary X; 1 moves at the
2

velocity of the fluid u? , between t" and L=

2
n+1,f
X,_Fl l+§ + At u
. n+1 — n+l n+| . nFH’,
1—‘— ’,' 173 1+ 1 7.+ 5
At| . ,
o Wiy Wy Wiy
[ | | | T
Ti-3 Tig ZTitd Tit3

Jonathan Jung Computing bubble oscillations on GPU



Model and numerical scheme in 1D Equations
Lagrangian step
emapping ste

Proper

Finite volume scheme

Lagrange Step:
n tn-H‘—

The integration of ;W + 0,F (W) = 0 on the space-time
quadrilateral @ gives:
DWW AL (F(W), WLy = F(WEL, W) =0

i

where F(W,, Wg) is the Lagrangian flux and At satisfies the CFL
condition.
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Model and numerical scheme in 1D Equations
Lagrangian step
Remapping step
Properties of the scheme

Lagrangian flux

We recall that the Lagrangian flux is:

FOWPWEa): = F(WES) = uf Wi,

For computing the i/ + 1/2 quantities, we can use an exact
Riemann solver or the acoustic Riemann solver [?] given by

n _ u/{’ + UF_H_ 1 n n
Vipr = —7 %~ 270?(Pi+1 —pi);
P +pha  pc
P,Zr% = %_7(%&1_“:{7)7

where pc = \/maX(PLCE, pRCR) Min(pL, pR).
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Model and numerical scheme in 1D

Remapping step
Properties of the scheme

Remapping step

@ The Lagrangian step is done: we have WI."H’_.
@ Problem: how to do the projection to go back to the original

grid?
n+l _ m+1 n+l _
Wit =1 Wi =1 Wi =2
*> * * >
N
Remapping Step:
ntl,— n+l
nt1,— Wit et t -t
| Wity | i i it+1 |
I . R B B
) ; : | A
At ; | Lagrange Step:
Y 3 H | [ tn«\»l,f
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Model and numerical scheme in 1D Equations

g
Properties of the scheme

Classical projection: averaging projection

We take:
wrtt = W"H - At (max(ui_;,O)(VV,-nH’_ - VV;njll’_)
+  min( ,+1,O)(W,-1+11’_ — W),

We obtain oscillations on the
pressure:

Problem: We consider

| Quantities | Left [ Right |

p(kg.m=3) | 10 1 e
u(m.s~1) | 50 50
p(Pa) 1.1e5 | 1leb

%) 1 0
~ 1.4 1.1
™ 0 0

aaaaaa
0
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Model and numerical scheme in 1D

Properties of the scheme

Glimm projection

We choose a random point in the cells. According to the position
of this point, we pick-up the corresponding value in the Lagrangian
mesh.

More precisely, let w, be an random number € [0; 1] and we take

(see [?]):

WS i Xy 4 walx < X
2 -2
\/\/,,”Jrl = VVI-"+1’_, if xl,"+11’_ <X 1 +wpAx < XI,":}’_,
-3 2 3
n+l,— - n+1,—
i1 s Iin_% + wpAx > XH_% .
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Model and numerical scheme in 1D

Glimm projection

[llustration: We pick up a random number w, € [0; 1].

I ” mil _ ”'n'H WTH‘] WnH - WNH-] _ WY?H‘],—

i-1 7 | Uil 7 Uil )
'1—§+ AL i l+w”Al’ ; H\-\-’W‘HAI ;
n+1 - n+1 — n+1 -
L+1
2 n+1 — n+1 - Ll L=
Tiog 1—7 l+z 1+2

1.— _ _
o X" < X3 —i—wnAx <x"hT o owrtt = W-n+11’ )

i-3 — =3 — ‘+3 i—1 i—
0 x;_1 +wplx < x0T = W = W
2
1
o X" < X4 1 + wpAx < x" 31 W"+1 W"Jrl
+3 i*+3

Jonathan Jung Computing bubble oscillations on GPU



Model and numerical scheme in 1D

s of the scheme

Problem: the resulting scheme does not converge

We consider the following

: : The resulting scheme does not
Riemann problem: air shock

converge:
wave impinging a liquid
interface .
’ Quantities ‘ Left . ‘ Right ‘ 3,0—W\WWJW
p(kg.m=3) | 3.488 1
u(ms™) | 113 | -1
p(Pa) 23.33 2
© 1 0 ]
ol 1.4 2 :
s 0 7
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Model and numerical scheme in 1D

Properties of the scheme

Solution: a mixed projection

We apply the Glimm approach only at the two-fluid interface

o If (¢f_y — 3)(f —3) <Oor (o] = 3)(¢fy1 —3) <O,
We take a random number w, € [0, 1[, and we take:

1,— . 1.
|/|/I"_+1’ , if X, —|—w,,AX<x,,"_+l’ ,

1
3
Wt = § WX < wplx < X
-1 3 2
n+1,— - nt+l,—
Wi, if X 1 + wpAx > X,-_i_% )
o else,
_ At - -
‘/Vi,,+1 _ VV,-"H’ _/t (max(u-_;,O)(W-”H’ _ W.”_+11, )
Ax 72 I I

+ min(uy, 1, 0)(WTHT — W),
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Model and numerical scheme in 1D

Remapping step
Properties of the scheme

Results obtained with the mixed projection

There is no oscillations on We have no oscillation on the
pressure where the averaging density where the Glimm
projection failed. projection failed:

110000
o <
pox - 30

108000

106000

Pressure

104000

102000

-5 -4 a3 22

2 -1 0 1
x(m)

100000
0

0z 04 06 08 1 12 14 16 18 2 +__Mixed projection Lxact
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Model and numerical scheme in 1D

Remapping step
Properties of the scheme

Convergence of the mixed projection

We observe the numerical convergence in the L!-norm.
The convergence rate is approximately 0.5 for the Saurel-Abgrall
approach and 0.8 for the mixed projection.

-LOG(h)
25 30 40
I i h "
1,0 4
N
-1519 ~
B N
5 ~
g s
2204 o
N
N
.
N
2 N
L
N
-301 N
[=—Glimm —-— Mixed projection Saurel-Abgrall |
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Model and numerical scheme in 1D

ep
roperties of the scheme

Properties of the scheme

@ There is no diffusion on @ There is no velocity and
o if ¢ € {0,1}, this pressure oscillations at
property is exactly interface:

preserved at any time.
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Model and numerical scheme in 1D

Spherical bubble

In spherical coordinates, the model becomes

9t(Ap) + 0x(Apu)
0r(Apu) + 0x(A(pu® +p)) = pA'(x),
0t(ApE) + Ox(A(pE + p)u)
It(App) + Ox(Appu)
where A(x) = x2 appears because of the spherical symmetry.

We can compute bubble oscillations with this model and compare
it to the Keller-Miksis model.
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Model and numerical scheme in 1D Equations
ng
emapping ste
Properties of the scheme

Preliminary numerical results
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o Mixed projection with pDxA —— Keller-Miksis ‘
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Equations
Splitting
Properties of the scheme

Model and numerical scheme in 2D

We consider the 2D Euler equations:

0(p) + Ox(pu) + 9y (pv) =

Or(pu) + Ou(pu® + p) + Oy (puv) =

Be(pv) + Ox(puv) + 8y (pv? + p) =

0:(pE) + 0x((pE + p)u) + Oy ((pE + p)v)
de(pp) + Ox(peu) + 9y (ppv) = 0,

where p is the density, u the x-velocity, v is the y-velocity, E the
total energy, ¢ the fraction of mass of gas and p satisfies the
stiffened gas pressure law:

p(ps e, o) = (v(¢) — 1)pe — v(p)m(p),

where
2 2
e=E— (u”+v9)/2



Equations
Splitting
Properties of the scheme

Model and numerical scheme in 2D

We can write the system in the conservative form:
OW + O F(W)+0,G(W) =0,
where the vector of conservative variables is:
W = (p, pu, pv, pE, p) T,

and the conservative fluxes are:

F(W) = (pu, pu” + p, puv, (pE + p)u, pou) ",
G(W) = (pv, puv, pv® + p, (pE + p)v, ppv) .
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Equations
Splitting
Properties of the scheme

Model and numerical scheme in 2D

Splitting

For solving
{ OeW + 0,F(W) +9,G(W) =0,
W(X7y7 t= O) = WO(va)a
between time t = 0 and t = At, we use dimensional splitting.
o Firstly, we solve

{ oW + 0xF(W) =0,
W(x,y,t =0) = Wo(x,y),
between time t = 0 and t = At, we obtain W;.
@ Secondly, we solve
{ oW +0,G(W) =0,
W(x,y,t =0) = Wi(x,y),
between time t = 0 and t = At.
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Equations
Splitting
Properties of the scheme

Model and numerical scheme in 2D

Properties of the scheme

The constructed scheme has the following properties:

e if at initial time the x-velocity u, the y-velocity v and the
pressure p are constant, this property is preserved at any time.
o if at initial time the fraction of mass of gas ¢ takes only the

two values 0 or 1, this property is exactly preserved at any
time.
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What is a GPU?

How write the pr m?
Implementation o 1D code
Implementation of the 2D code
Implementation of the 2D code

How to implement on GPU?

What is a GPU?

A modern Graphics Processing Unit (GPU) is made of:
@ Global memory (typically 1 Gb)
e Compute units (typically 27).
Each compute unit is made of:
@ Processing elements (typically 8).
@ Local memory (typically 16 kb)

The same program can be executed on all the processing elements
at the same time.

@ All the processing elements have access to the global memory

@ The processing elements have only access to the local memory
of their compute unit.

@ The access to the global memory is slow while the access to
the local memory is fast.
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Implementation of the 1D code
Implementation of the 2D code
Implementation of the 2D code

How to implement on GPU?

Example of a GPU

GPU
el €
[
E
) PE2F1 &
E —
(]
g cu1
5
Q
=) [ N
G} PE 3 [ g
E
PE4t— 8
cu?2
! i
Host
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What is a GPU?

How write the program?
Implementation of the 1D code
Implementation of the 2D code
Implementation of the 2D code

How to implement on GPU?

@ OpenCL means “Open Computing Language”. It includes:

e A library of C functions, called from the host, in order to drive
the GPU.

o A C-like language for writing the kernels that will be executed
on the processing elements.

o Virtually, it allows to have as many compute units
(work-groups) and processing elements (work-items) as
needed.

@ The threads are sent to the GPU thanks to a mechanism of
command queues on the real compute units and processing
elements.

@ Portable: the same program can run on a multicore CPU and
a GPU. It is also possible to manage several devices in the
same program.
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What is a GPU?

How write the program?
Implementation of the 1D code
Implementation of the 2D code
Implementation of the 2D code

How to implement on GPU?

Implementation in 1D

@ Initialization: we initialize the data on the CPU and we send
all the data to the GPU.
@ Time step:
e Computing VV,"H’*: we associate to each cell of the grid one
processor (work-item). We compute the fluxes and update the
time step for the next time step.

o We wait that all processors have finished.
o Update: we apply the mixed projection to obtain W/ 1.

— We do that while t < tgpa).
@ We send all the data to the CPU for post-processing.
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i ?
How to implement on GPU? Implementation of the 2D code

Implementation of the 2D code

Method for the 2D

We want to use our 1D algorithm.
— We use the rotationnal invariance of the Euler equations.

As

F(W) = (pu, pu® + p, puv, (pE + p)u, ppu) ",
G(W) = (pv, puv, pv® + p, (pE + p)v, ppv) T,

if we note W = (p, pv, pu, pE, pp) ", we have

F(W) = (pv, pv® + p, puv, (pE + p)v, ppv)T.

— We just have to exchange the pu and pv place of storage.
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What is a GPU?

How write the program?
Implementation of 1D code
Implementation of the 2D code
Implementation of the 2D code

How to implement on GPU?

Implementation in 2D

@ Initialization: we initialize the data on the CPU and we send
all the data to the GPU.
@ For each time step:

e We associate to each row of the grid a work-group and to each
cell of the row a virtual processor (work-item). We perform the
flux computations and projections in the x direction for each
work-group.

o We "transpose”: we exchange the pu and pv components and
we reorganize the data such that the x and y coordinates are
exchanged.

o We perform the flux computations and projections in the y
direction for each work group. Thanks to the transposition,
the memory access are optimal

o We transpose to have the correct value in the correct place for
the next time step.

@ We send all the data to the CPU for post-processing.



A test with two gas
A test with liquid and gas
Application on studying bubble oscillation Speedup

Shock-bubble interaction

We consider a shock The initial data are:
arriving on a bubble at
velocity o = 415m.s™ ! (see

7). | Quantities | Y1 | Y2 [ Y3 |
p(kg.m=3) | 1.69 | 1.22 | 3.86
e u(ms™1) [ 1135 | 0 0
v(m.s~1) 0 0 0
- p(Pa) | 1.6e5 | 1.0e5 | 1.0€5
Y3 %) 0 0 1
v 1.4 | 1.4 [1.249
L i 0 0 0
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A test with two gas
A test with liquid and gas

Application on studying bubble oscillation Szl

Video

@ Number of points of the grid = 512 x 512 ~ 262 000.

@ Number of unknowns per time step
= Number of points of the grid x5.
~ 1310 000.
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A test with two gas
A test with liquid and gas
Speedup

Application on studying bubble oscillation

Numerical results

Final time=0.005s.

@ The density @ Masse fraction:

AHO

1.63 3.63 5.0
PHI
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A test with two gas
A test with liquid and gas

Application on studying bubble oscillation Speedup

Numerical results

@ The x-velocity @ The y-velocity

Sl
: <

v
s 02 166 877 0.132 37.4
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A test with two gas
A test with liquid and gas
Application on studying bubble oscillation Speedup

Numerical results

@ The pressure @ The interface

v
.
.,
- -

1548405 1596405 1.636+05

PHI
0.5 1
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A test with two gas
A test with liquid and gas

Application on studying bubble oscillation Speedup

Initial condition

We consider a shock that The initial data are:
comes to a bubble at
velocity o = 100m.s~1.
| Quantities | Y1 Y2 | Y3 ]
Pre- p(kg.m=3) | 1384 | 1000 | 1
u(m.s™1) 27.8 0 0
- v(m.s~T) 0 0 0
” p(Pa) | 2.87¢6 | 1eb | 1eb
%) 0 0 1
T ~ 44 44 | 14
T 4.68e5 | 4.68¢e5 | 0
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A test with liquid and gas

Application on studying bubble oscillation Szl

Video

@ Number of points of the grid = 512 x 512 ~ 262 000.

@ Number of unknowns per time step
= Number of points of the grid x5.
~ 1310 000.
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A test with |IC|UId and gas
Speedup

Application on studying bubble oscillation

Numerical results

Final time=0.0055s.

@ The density @ Mass fraction

RHO PHI
7.a7 743 1480403 0 05 1
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A test with two gas
A test with liquid and gas

Application on studying bubble oscillation Speedup

Numerical results

@ The x-velocity @ The y-velocity
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A test with tw
A test with liqu
Speedup

Application on studying bubble oscillation

Numerical results

@ The pressure @ The interface

18205 1550408 3016408
 —

PHI
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A test with two gas
A test with liquid and gas
Application on studying bubble oscillation Speedup

Speedup

The computation was done with a grid of 256 x 256 points with a
the final time is t;,2 = 0.004.

| time (s) |
AMD Phenom 11 x4 945 (1 core) 192
AMD Phenom Il x4 945 (4 cores) 59
1.43

AMD Radeon HD5850
NVIDIA GTX 460 2.48
NVIDIA Geforce GTX470 0.93
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A test h liquid and gas
Speedup

Application on studying bubble oscillation

Thank you for your attention!

P
1540405 1590405 1830105

10105 1.550106 5.010106
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liquid

Application on studying bubble oscillation
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